Spaces:
Sleeping
Sleeping
File size: 11,941 Bytes
b9816ab 41107fa b9816ab df70562 18b3426 b9816ab fdd43d8 18b3426 b9816ab fdd43d8 18b3426 b9816ab fdd43d8 b9816ab df70562 b9816ab 9fb4a28 df70562 b9816ab df70562 b9816ab df70562 b9816ab df70562 b9816ab fdd43d8 18b3426 fdd43d8 a90ec89 6af0f90 a90ec89 6af0f90 a90ec89 18b3426 a90ec89 6af0f90 a90ec89 18b3426 a90ec89 18b3426 a90ec89 18b3426 a90ec89 fdd43d8 df70562 b9816ab df70562 b9816ab df70562 06398f6 b9816ab df70562 b9816ab 06398f6 b9816ab e3d1d28 b9816ab 41cfe38 b9816ab df70562 e67e970 d3d85e7 df70562 e67e970 d3d85e7 b9816ab c1cd6f3 df70562 b9816ab df70562 b9816ab df70562 b9816ab df70562 b9816ab df70562 c1cd6f3 18b3426 c1cd6f3 b9816ab df70562 b9816ab fdd43d8 b9816ab df70562 b9816ab df70562 b9816ab df70562 b9816ab df70562 9fb4a28 b9816ab df70562 ed22689 b9816ab 84cd80a c1cd6f3 6af0f90 b9816ab df70562 b9816ab c1cd6f3 6af0f90 df70562 b9816ab fdd43d8 df70562 18b3426 b9816ab 2f42d70 b5df8a7 6af0f90 b9816ab e67e970 2f42d70 b9816ab 0f679e8 fdd43d8 6af0f90 b9816ab 84cd80a 6af0f90 b9816ab 2f42d70 fdd43d8 6af0f90 fdd43d8 2f42d70 df70562 2691303 6af0f90 84cd80a b9816ab 41107fa 84cd80a b9816ab 84cd80a 0f679e8 6af0f90 84cd80a 0f679e8 b9816ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import utils
import os
import math
import json
import jsbeautifier
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.channels import read_custom_montage
from scipy.interpolate import Rbf
from scipy.optimize import linear_sum_assignment
from sklearn.neighbors import NearestNeighbors
def get_matched(tpl_names, tpl_dict):
return [name for name in tpl_names if tpl_dict[name]["matched"]==True]
def get_empty_template(tpl_names, tpl_dict):
return [name for name in tpl_names if tpl_dict[name]["matched"]==False]
def get_unassigned_input(in_names, in_dict):
return [name for name in in_names if in_dict[name]["assigned"]==False]
def read_montage(loc_file):
tpl_montage = read_custom_montage("./template_chanlocs.loc")
in_montage = read_custom_montage(loc_file)
tpl_names = tpl_montage.ch_names
in_names = in_montage.ch_names
tpl_dict = {}
in_dict = {}
# convert all channel names to uppercase and store their information
for i, name in enumerate(tpl_names):
up_name = str.upper(name)
tpl_montage.rename_channels({name: up_name})
tpl_dict[up_name] = {
"index" : i,
"coord_3d" : tpl_montage.get_positions()['ch_pos'][up_name],
"matched" : False
}
for i, name in enumerate(in_names):
up_name = str.upper(name)
in_montage.rename_channels({name: up_name})
in_dict[up_name] = {
"index" : i,
"coord_3d" : in_montage.get_positions()['ch_pos'][up_name],
"assigned" : False
}
return tpl_montage, in_montage, tpl_dict, in_dict
def match_name(stage1_info):
# read the location file
loc_file = stage1_info["fileNames"]["inputData"]
tpl_montage, in_montage, tpl_dict, in_dict = read_montage(loc_file)
tpl_names = tpl_montage.ch_names
in_names = in_montage.ch_names
old_idx = [[None]]*30 # store the indices of the in_channels in the order of tpl_channels
is_orig_data = [False]*30
alias_dict = {
'T3': 'T7',
'T4': 'T8',
'T5': 'P7',
'T6': 'P8'
}
for i, name in enumerate(tpl_names):
if name in alias_dict and alias_dict[name] in in_dict:
tpl_montage.rename_channels({name: alias_dict[name]})
tpl_dict[alias_dict[name]] = tpl_dict.pop(name)
name = alias_dict[name]
if name in in_dict:
old_idx[i] = [in_dict[name]["index"]]
is_orig_data[i] = True
tpl_dict[name]["matched"] = True
in_dict[name]["assigned"] = True
# update the names
tpl_names = tpl_montage.ch_names
stage1_info.update({
"unassignedInput" : get_unassigned_input(in_names, in_dict),
"emptyTemplate" : get_empty_template(tpl_names, tpl_dict),
"mappingResult" : [
{
"index" : old_idx,
"isOriginalData" : is_orig_data
}
]
})
channel_info = {
"templateNames" : tpl_names,
"inputNames" : in_names,
"templateDict" : tpl_dict,
"inputDict" : in_dict
}
return stage1_info, channel_info, tpl_montage, in_montage
def align_coords(channel_info, tpl_montage, in_montage):
tpl_names = channel_info["templateNames"]
in_names = channel_info["inputNames"]
tpl_dict = channel_info["templateDict"]
in_dict = channel_info["inputDict"]
matched_names = get_matched(tpl_names, tpl_dict)
# 2D alignment (for visualization purposes)
fig = [tpl_montage.plot(), in_montage.plot()]
ax = [fig[0].axes[0], fig[1].axes[0]]
# extract the displayed 2D coordinates
all_tpl = ax[0].collections[0].get_offsets().data
all_in= ax[1].collections[0].get_offsets().data
matched_tpl = np.array([all_tpl[tpl_dict[name]["index"]] for name in matched_names])
matched_in = np.array([all_in[in_dict[name]["index"]] for name in matched_names])
plt.close('all')
# apply TPS to transform in_channels to align with tpl_channels positions
rbf_x = Rbf(matched_in[:,0], matched_in[:,1], matched_tpl[:,0], function='thin_plate')
rbf_y = Rbf(matched_in[:,0], matched_in[:,1], matched_tpl[:,1], function='thin_plate')
# apply the transformation to all in_channels
transformed_in_x = rbf_x(all_in[:,0], all_in[:,1])
transformed_in_y = rbf_y(all_in[:,0], all_in[:,1])
transformed_in = np.vstack((transformed_in_x, transformed_in_y)).T
for i, name in enumerate(tpl_names):
tpl_dict[name]["coord_2d"] = all_tpl[i]
for i, name in enumerate(in_names):
in_dict[name]["coord_2d"] = transformed_in[i].tolist()
# 3D alignment
all_tpl = np.array([tpl_dict[name]["coord_3d"].tolist() for name in tpl_names])
all_in = np.array([in_dict[name]["coord_3d"].tolist() for name in in_names])
matched_tpl = np.array([all_tpl[tpl_dict[name]["index"]] for name in matched_names])
matched_in = np.array([all_in[in_dict[name]["index"]] for name in matched_names])
rbf_x = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,0], function='thin_plate')
rbf_y = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,1], function='thin_plate')
rbf_z = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,2], function='thin_plate')
transformed_in_x = rbf_x(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in_y = rbf_y(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in_z = rbf_z(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in = np.vstack((transformed_in_x, transformed_in_y, transformed_in_z)).T
for i, name in enumerate(in_names):
in_dict[name]["coord_3d"] = transformed_in[i].tolist()
channel_info.update({
"templateDict" : tpl_dict,
"inputDict" : in_dict
})
return channel_info
def save_figure(channel_info, tpl_montage, filename1, filename2):
tpl_names = channel_info["templateNames"]
in_names = channel_info["inputNames"]
tpl_dict = channel_info["templateDict"]
in_dict = channel_info["inputDict"]
tpl_x = [tpl_dict[name]["coord_2d"][0] for name in tpl_names]
tpl_y = [tpl_dict[name]["coord_2d"][1] for name in tpl_names]
in_x = [in_dict[name]["coord_2d"][0] for name in in_names]
in_y = [in_dict[name]["coord_2d"][1] for name in in_names]
tpl_coords = np.vstack((tpl_x, tpl_y)).T
in_coords = np.vstack((in_x, in_y)).T
# extract template's head figure
tpl_fig = tpl_montage.plot()
tpl_ax = tpl_fig.axes[0]
lines = tpl_ax.lines
head_lines = []
for line in lines:
x, y = line.get_data()
head_lines.append((x,y))
# -------------------------plot input montage------------------------------
fig = plt.figure(figsize=(6.4,6.4), dpi=100)
ax = fig.add_subplot(111)
fig.tight_layout()
ax.set_aspect('equal')
ax.axis('off')
# plot template's head
for x, y in head_lines:
ax.plot(x, y, color='black', linewidth=1.0)
# plot in_channels on it
ax.scatter(in_coords[:,0], in_coords[:,1], s=35, color='black')
for i, name in enumerate(in_names):
ax.text(in_coords[i,0]+0.004, in_coords[i,1], name, color='black', fontsize=10.0, va='center')
# save input_montage
fig.savefig(filename1)
# ---------------------------add indications-------------------------------
# plot unmatched input channels in red
indices = [in_dict[name]["index"] for name in in_names if in_dict[name]["assigned"]==False]
if indices != []:
ax.scatter(in_coords[indices,0], in_coords[indices,1], s=35, color='red')
for i in indices:
ax.text(in_coords[i,0]+0.004, in_coords[i,1], in_names[i], color='red', fontsize=10.0, va='center')
# save mapped_montage
fig.savefig(filename2)
# -------------------------------------------------------------------------
# store the tpl and in_channels' display positions (in px)
tpl_coords = ax.transData.transform(tpl_coords)
in_coords = ax.transData.transform(in_coords)
plt.close('all')
for i, name in enumerate(tpl_names):
left = tpl_coords[i,0]/6.4
bottom = tpl_coords[i,1]/6.4
tpl_dict[name]["css_position"] = [round(left, 2), round(bottom, 2)]
for i, name in enumerate(in_names):
left = in_coords[i,0]/6.4
bottom = in_coords[i,1]/6.4
in_dict[name]["css_position"] = [round(left, 2), round(bottom, 2)]
channel_info.update({
"templateDict" : tpl_dict,
"inputDict" : in_dict
})
return channel_info
def find_neighbors(channel_info, empty_tpl_names, old_idx):
in_names = channel_info["inputNames"]
tpl_dict = channel_info["templateDict"]
in_dict = channel_info["inputDict"]
all_in = [np.array(in_dict[name]["coord_3d"]) for name in in_names]
empty_tpl = [np.array(tpl_dict[name]["coord_3d"]) for name in empty_tpl_names]
# use KNN to choose k nearest channels
k = 4 if len(in_names)>4 else len(in_names)
knn = NearestNeighbors(n_neighbors=k, metric='euclidean')
knn.fit(all_in)
for i, name in enumerate(empty_tpl_names):
distances, indices = knn.kneighbors(empty_tpl[i].reshape(1,-1))
idx = tpl_dict[name]["index"]
old_idx[idx] = indices[0].tolist()
return old_idx
def optimal_mapping(channel_info):
tpl_names = channel_info["templateNames"]
in_names = channel_info["inputNames"]
tpl_dict = channel_info["templateDict"]
in_dict = channel_info["inputDict"]
unass_in_names = get_unassigned_input(in_names, in_dict)
# reset all tpl.matched to False
for name in tpl_dict:
tpl_dict[name]["matched"] = False
all_tpl = np.array([tpl_dict[name]["coord_3d"] for name in tpl_names])
unass_in = np.array([in_dict[name]["coord_3d"] for name in unass_in_names])
# initialize the cost matrix for the Hungarian algorithm
if len(unass_in_names) < 30:
cost_matrix = np.full((30, 30), 1e6) # add dummy channels to ensure num_col >= num_row
else:
cost_matrix = np.zeros((30, len(unass_in_names)))
# fill the cost matrix with Euclidean distances between tpl and unassigned in_channels
for i in range(30):
for j in range(len(unass_in_names)):
cost_matrix[i][j] = np.linalg.norm((all_tpl[i]-unass_in[j])*1000)
# apply the Hungarian algorithm to optimally assign one in_channel to each tpl_channel
# by minimizing the total distances between their positions.
row_idx, col_idx = linear_sum_assignment(cost_matrix)
# store the mapping result
old_idx = [[None]]*30
is_orig_data = [False]*30
for i, j in zip(row_idx, col_idx):
if j < len(unass_in_names): # filter out dummy channels
tpl_name = tpl_names[i]
in_name = unass_in_names[j]
old_idx[i] = [in_dict[in_name]["index"]]
is_orig_data[i] = True
tpl_dict[tpl_name]["matched"] = True
in_dict[in_name]["assigned"] = True
# fill the remaining empty tpl_channels
empty_tpl_names = get_empty_template(tpl_names, tpl_dict)
if empty_tpl_names != []:
old_idx = find_neighbors(channel_info, empty_tpl_names, old_idx)
result = {
"index" : old_idx,
"isOriginalData" : is_orig_data
}
channel_info["inputDict"] = in_dict
return result, channel_info
def mapping_result(stage1_info, channel_info, filename):
unassigned_num = len(stage1_info["unassignedInput"])
batch = math.ceil(unassigned_num/30) + 1
# map the remaining in_channels
results = stage1_info["mappingResult"]
for i in range(1, batch):
# optimally select 30 in_channels to map to the tpl_channels based on proximity
result, channel_info = optimal_mapping(channel_info)
results += [result]
'''
for i in range(batch):
results[i]["name"] = {}
for j, indices in enumerate(results[i]["index"]):
names = [channel_info["inputNames"][idx] for idx in indices] if indices!=[None] else ["zero"]
results[i]["name"][channel_info["templateNames"][j]] = names
'''
data = {
#"templateNames" : channel_info["templateNames"],
#"inputNames" : channel_info["inputNames"],
"channelNum" : len(channel_info["inputNames"]),
"batch" : batch,
"mappingResult" : results
}
options = jsbeautifier.default_options()
options.indent_size = 4
json_data = jsbeautifier.beautify(json.dumps(data), options)
with open(filename, 'w') as jsonfile:
jsonfile.write(json_data)
stage1_info.update({
"batch" : batch,
"mappingResult" : results
})
return stage1_info, channel_info
|