File size: 12,981 Bytes
71e584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c0b72
71e584e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import utils
import os
import math
import json
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.channels import read_custom_montage
from scipy.interpolate import Rbf
from scipy.optimize import linear_sum_assignment
from sklearn.neighbors import NearestNeighbors

def reorder_data(idx_order, fill_flags, filename, new_filename):
	# read the input data
	raw_data = utils.read_train_data(filename)
	#print(raw_data.shape)
	new_data = np.zeros((30, raw_data.shape[1]))
	
	zero_arr = np.zeros((1, raw_data.shape[1]))
	for i, (idx_set, flag) in enumerate(zip(idx_order, fill_flags)):
		if flag == False:
			new_data[i, :] = raw_data[idx_set[0], :]
		elif idx_set == []:
			new_data[i, :] = zero_arr
		else:
			tmp_data = [raw_data[j, :] for j in idx_set]
			new_data[i, :] = np.mean(tmp_data, axis=0)
	
	utils.save_data(new_data, new_filename)
	return raw_data.shape

def restore_order(batch_cnt, raw_data_shape, idx_order, fill_flags, filename, new_filename):
	# read the denoised data
	d_data = utils.read_train_data(filename)
	if batch_cnt == 0:
		new_data = np.zeros((raw_data_shape[0], d_data.shape[1]))
		#print(new_data.shape)
	else:
		new_data = utils.read_train_data(new_filename)
	
	for i, (idx_set, flag) in enumerate(zip(idx_order, fill_flags)):
		# ignore if this channel was filled using "fillmode"
		if flag == False:
			new_data[idx_set[0], :] = d_data[i, :]
	
	utils.save_data(new_data, new_filename)
	return

def get_matched(tpl_order, tpl_dict):
    return [channel for channel in tpl_order if tpl_dict[channel]["matched"]==True]

def get_empty_templates(tpl_order, tpl_dict):
    return [channel for channel in tpl_order if tpl_dict[channel]["matched"]==False]

def get_unassigned_inputs(in_order, in_dict):
    return [channel for channel in in_order if in_dict[channel]["assigned"]==False]

def read_montage_data(loc_file):
	tpl_montage = read_custom_montage("./template_chanlocs.loc")
	in_montage = read_custom_montage(loc_file)
	tpl_order = tpl_montage.ch_names
	in_order = in_montage.ch_names
	tpl_dict = {}
	in_dict = {}
	
	# convert all channel names to uppercase and store the channel information
	for i, channel in enumerate(tpl_order):
		up_channel = str.upper(channel)
		tpl_montage.rename_channels({channel: up_channel})
		tpl_dict[up_channel] = {
			"index" : i,
			"coord_3d" : tpl_montage.get_positions()['ch_pos'][up_channel],
			"matched" : False
		}
	for i, channel in enumerate(in_order):
		up_channel = str.upper(channel)
		in_montage.rename_channels({channel: up_channel})
		in_dict[up_channel] = {
			"index" : i,
			"coord_3d" : in_montage.get_positions()['ch_pos'][up_channel],
			"assigned" : False
		}
	return tpl_montage, in_montage, tpl_dict, in_dict

def save_figures(channel_info, tpl_montage, filename1, filename2):
	tpl_order = channel_info["templateOrder"]
	in_order = channel_info["inputOrder"]
	tpl_dict = channel_info["templateDict"]
	in_dict = channel_info["inputDict"]
	
	tpl_x = [tpl_dict[channel]["coord_2d"][0] for channel in tpl_order]
	tpl_y = [tpl_dict[channel]["coord_2d"][1] for channel in tpl_order]
	in_x = [in_dict[channel]["coord_2d"][0] for channel in in_order]
	in_y = [in_dict[channel]["coord_2d"][1] for channel in in_order]
	tpl_coords = np.vstack((tpl_x, tpl_y)).T
	in_coords = np.vstack((in_x, in_y)).T
	
	# extract template's head figure
	tpl_fig = tpl_montage.plot()
	tpl_ax = tpl_fig.axes[0]
	lines = tpl_ax.lines
	head_lines = []
	for line in lines:
		x, y = line.get_data()
		head_lines.append((x,y))
	plt.close()
	
	# -------------------------plot input montage------------------------------
	fig = plt.figure(figsize=(6.4,6.4), dpi=100)
	ax = fig.add_subplot(111)
	fig.tight_layout()
	ax.set_aspect('equal')
	ax.axis('off')
	
	# plot template's head
	for x, y in head_lines:
		ax.plot(x, y, color='black', linewidth=1.0)
	# plot in_channels on it
	ax.scatter(in_coords[:,0], in_coords[:,1], s=35, color='black')
	for i, channel in enumerate(in_order):
		ax.text(in_coords[i,0]+0.003, in_coords[i,1], channel, color='black', fontsize=10.0, va='center')
	# save input_montage
	fig.savefig(filename1)
	
	# ---------------------------add indications-------------------------------
	# plot unmatched input channels in red
	indices = [in_dict[channel]["index"] for channel in in_order if in_dict[channel]["assigned"]==False]
	ax.scatter(in_coords[indices,0], in_coords[indices,1], s=35, color='red')
	for i in indices:
		ax.text(in_coords[i,0]+0.003, in_coords[i,1], in_order[i], color='red', fontsize=10.0, va='center')
	# save mapped_montage
	fig.savefig(filename2)
	
	# -------------------------------------------------------------------------
	# store the tpl and in_channels' display positions (in px).
	tpl_coords = ax.transData.transform(tpl_coords)
	in_coords = ax.transData.transform(in_coords)
	plt.close()
	
	for i, channel in enumerate(tpl_order):
		css_left = (tpl_coords[i,0]-11)/6.4
		css_bottom = (tpl_coords[i,1]-7)/6.4
		tpl_dict[channel]["css_position"] = [str(round(css_left, 2))+"%", str(round(css_bottom, 2))+"%"]
	for i, channel in enumerate(in_order):
		css_left = (in_coords[i,0]-11)/6.4
		css_bottom = (in_coords[i,1]-7)/6.4
		in_dict[channel]["css_position"] = [str(round(css_left, 2))+"%", str(round(css_bottom, 2))+"%"]
	
	channel_info.update({
		"templateDict" : tpl_dict,
		"inputDict" : in_dict
	})
	return channel_info

def align_coords(channel_info, tpl_montage, in_montage):
	tpl_order = channel_info["templateOrder"]
	in_order = channel_info["inputOrder"]
	tpl_dict = channel_info["templateDict"]
	in_dict = channel_info["inputDict"]
	matched = get_matched(tpl_order, tpl_dict)
	
	# 2D alignment (for visualization purposes)
	fig = [tpl_montage.plot(), in_montage.plot()]
	ax = [fig[0].axes[0], fig[1].axes[0]]
	
	# extract the displayed 2D coordinates from the plots
	all_tpl = ax[0].collections[0].get_offsets().data
	all_in= ax[1].collections[0].get_offsets().data
	matched_tpl = np.array([all_tpl[tpl_dict[channel]["index"]] for channel in matched])
	matched_in = np.array([all_in[in_dict[channel]["index"]] for channel in matched])
	
	# apply TPS to transform in_channels positions to align with tpl_channels positions
	rbf_x = Rbf(matched_in[:,0], matched_in[:,1], matched_tpl[:,0], function='thin_plate')
	rbf_y = Rbf(matched_in[:,0], matched_in[:,1], matched_tpl[:,1], function='thin_plate')
	
	# apply the transformation to all in_channels
	transformed_in_x = rbf_x(all_in[:,0], all_in[:,1])
	transformed_in_y = rbf_y(all_in[:,0], all_in[:,1])
	transformed_in = np.vstack((transformed_in_x, transformed_in_y)).T
	
	# store the 2D positions
	for i, channel in enumerate(tpl_order):
		tpl_dict[channel]["coord_2d"] = all_tpl[i]
	for i, channel in enumerate(in_order):
		in_dict[channel]["coord_2d"] = transformed_in[i].tolist()
	
	
	# 3D alignment
	all_tpl = np.array([tpl_dict[channel]["coord_3d"].tolist() for channel in tpl_order])
	all_in = np.array([in_dict[channel]["coord_3d"].tolist() for channel in in_order])
	matched_tpl = np.array([all_tpl[tpl_dict[channel]["index"]] for channel in matched])
	matched_in = np.array([all_in[in_dict[channel]["index"]] for channel in matched])
	
	rbf_x = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,0], function='thin_plate')
	rbf_y = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,1], function='thin_plate')
	rbf_z = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,2], function='thin_plate')
	
	transformed_in_x = rbf_x(all_in[:,0], all_in[:,1], all_in[:,2])
	transformed_in_y = rbf_y(all_in[:,0], all_in[:,1], all_in[:,2])
	transformed_in_z = rbf_z(all_in[:,0], all_in[:,1], all_in[:,2])
	transformed_in = np.vstack((transformed_in_x, transformed_in_y, transformed_in_z)).T
	
	# update in_channels' 3D positions
	for i, channel in enumerate(in_order):
		in_dict[channel]["coord_3d"] = transformed_in[i].tolist()
	
	channel_info.update({
	    "templateDict" : tpl_dict,
	    "inputDict" : in_dict
	})
	return channel_info

def find_neighbors(channel_info, missing_channels, new_idx):
	in_order = channel_info["inputOrder"]
	tpl_dict = channel_info["templateDict"]
	in_dict = channel_info["inputDict"]
	
	all_in = [np.array(in_dict[channel]["coord_3d"]) for channel in in_order]
	empty_tpl = [np.array(tpl_dict[channel]["coord_3d"]) for channel in missing_channels]
	
	# use KNN to choose k nearest channels
	k = 4 if len(in_order)>4 else len(in_order)
	knn = NearestNeighbors(n_neighbors=k, metric='euclidean')
	knn.fit(all_in)
	for i, channel in enumerate(missing_channels):
		distances, indices = knn.kneighbors(empty_tpl[i].reshape(1,-1))
		idx = tpl_dict[channel]["index"]
		new_idx[idx] = indices[0].tolist()
    
	return new_idx

def match_names(stage1_info, channel_info):
    # read the location file
	loc_file = stage1_info["fileNames"]["input_loc"]
	tpl_montage, in_montage, tpl_dict, in_dict = read_montage_data(loc_file)
	tpl_order = tpl_montage.ch_names
	in_order = in_montage.ch_names
	new_idx = [[]]*30 # store the indices of the in_channels in the order of tpl_channels
	fill_flags = [True]*30 # record if each tpl_channel's data is filled by "fillmode"
	
	alias_dict = {
		'T3': 'T7',
		'T4': 'T8',
		'T5': 'P7',
		'T6': 'P8'
	}
	for i, channel in enumerate(tpl_order):
		if channel in alias_dict and alias_dict[channel] in in_dict:
			tpl_montage.rename_channels({channel: alias_dict[channel]})
			tpl_dict[alias_dict[channel]] = tpl_dict.pop(channel)
			channel = alias_dict[channel]
			
		if channel in in_dict:
			new_idx[i] = [in_dict[channel]["index"]]
			fill_flags[i] = False
			tpl_dict[channel]["matched"] = True
			in_dict[channel]["assigned"] = True
	
	# update the names
	tpl_order = tpl_montage.ch_names
	
	stage1_info.update({
	    "unassignedInputs" : get_unassigned_inputs(in_order, in_dict),
	    "missingTemplates" : get_empty_templates(tpl_order, tpl_dict),
	    "mappingData" : [
		{
			"newOrder" : new_idx,
			"fillFlags" : fill_flags
		}
	    ]
	})
	channel_info.update({
		"templateOrder" : tpl_order,
		"inputOrder" : in_order,
	    "templateDict" : tpl_dict,
	    "inputDict" : in_dict
	})
	return stage1_info, channel_info, tpl_montage, in_montage

def optimal_mapping(channel_info):
	tpl_order = channel_info["templateOrder"]
	in_order = channel_info["inputOrder"]
	tpl_dict = channel_info["templateDict"]
	in_dict = channel_info["inputDict"]
	unassigned = get_unassigned_inputs(in_order, in_dict)
	# reset all tpl.matched to False
	for channel in tpl_dict:
		tpl_dict[channel]["matched"] = False
	
	all_tpl = np.array([tpl_dict[channel]["coord_3d"] for channel in tpl_order])
	unassigned_in = np.array([in_dict[channel]["coord_3d"] for channel in unassigned])
	
	# initialize the cost matrix for the Hungarian algorithm
	if len(unassigned) < 30:
		cost_matrix = np.full((30, 30), 1e6) # add dummy channels to ensure num_col >= num_row
	else:
		cost_matrix = np.zeros((30, len(unassigned)))
	# fill the cost matrix with Euclidean distances between tpl_channels and unassigned in_channels
	for i in range(30):
		for j in range(len(unassigned)):
			cost_matrix[i][j] = np.linalg.norm((all_tpl[i]-unassigned_in[j])*1000)
	
	# apply the Hungarian algorithm to optimally assign one in_channel to each tpl_channel
	# by minimizing the total distances between their positions.
	row_idx, col_idx = linear_sum_assignment(cost_matrix)
	
	# store the mapping results
	new_idx = [[]]*30
	fill_flags = [True]*30
	for i, j in zip(row_idx, col_idx):
		if j < len(unassigned): # filter out dummy channels
			tpl_channel = tpl_order[i]
			in_channel = unassigned[j]
			
			new_idx[i] = [in_dict[in_channel]["index"]]
			fill_flags[i] = False
			tpl_dict[tpl_channel]["matched"] = True
			in_dict[in_channel]["assigned"] = True
			#print(f'{tpl_channel}({i}) <- {in_channel}({j})')
	
	# fill the remaining empty tpl_channels
	missing_channels = get_empty_templates(tpl_order, tpl_dict)
	if missing_channels != []:
	    new_idx = find_neighbors(channel_info, missing_channels, new_idx)
	
	mapping_data = {
		"newOrder" : new_idx,
		"fillFlags" : fill_flags
	}
	channel_info.update({
	    "templateDict" : tpl_dict,
	    "inputDict" : in_dict
	})
	return mapping_data, channel_info

def mapping_result(stage1_info, stage2_info, channel_info, filename):
	unassigned_num = len(stage1_info["unassignedInputs"])
	batch_num = math.ceil(unassigned_num/30) + 1
	
	# map the remaining in_channels
	for i in range(1, batch_num):
		# optimally select 30 in_channels to map to the tpl_channels based on proximity
		new_mapping_data, channel_info = optimal_mapping(channel_info)
		stage1_info["mappingData"] += [new_mapping_data]
	
	# save the mapping results
	new_dict = {
		#"templateOrder" : channel_info["templateOrder"],
		#"inputOrder" : channel_info["inputOrder"],
		"batchNum" : batch_num,
		"mappingData" : stage1_info["mappingData"]
	}
	with open(filename, 'w') as jsonfile:
		jsonfile.write(json.dumps(new_dict))
		
	stage2_info["totalBatchNum"] = batch_num
	return stage1_info, stage2_info, channel_info