File size: 5,333 Bytes
7129427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import utils
import os
import numpy as np

import mne
from mne.channels import read_custom_montage

def reorder_data(filename, old_idx):
	filepath = os.path.dirname(str(filename))
	old_data = utils.read_train_data(filename)
	new_data = np.zeros((30, old_data.shape[1]))
	#print('old = ', old_data.shape)

	for j in range(30):
		new_data[j, :] = old_data[old_idx[j]-1, :]

	#print('i = ', i+1, ', ', new_data.shape)
	utils.save_data(new_data, filepath+'/mapped.csv')
	return

def mapping(input_file, loc_file, fill_mode):
	template_montage = read_custom_montage("./template_chanlocs.loc")
	input_montage = read_custom_montage(loc_file)
	#template_montage.plot()
	#input_montage.plot()

	input_labels_dict = {}
	for i in range(30):
		template_montage.rename_channels({template_montage.ch_names[i]:str.upper(template_montage.ch_names[i])}) # 統一大寫

	for i in range(len(input_montage.ch_names)):
		input_montage.rename_channels({input_montage.ch_names[i]:str.upper(input_montage.ch_names[i])}) # 統一大寫
		input_labels_dict[input_montage.ch_names[i]] = i


	new_idx = [-1]*30
	new_idx_name = ['']*30 # tmp
	input_used = [0]*len(input_montage.ch_names)
	finish_flag = 1

	alias = {'T3':'T7', 'T4':'T8', 'T5':'P7', 'T6':'P8'} # CP7,FT7 ?
	
	# correct place
	for i in range(30):
		channel_name = template_montage.ch_names[i]

		if channel_name in input_labels_dict:
			new_idx[i] = input_labels_dict[channel_name]
			new_idx_name[i] = channel_name # tmp

			input_used[new_idx[i]] = 1

		elif channel_name in alias:
			template_montage.rename_channels({channel_name:alias[channel_name]})
			channel_name = template_montage.ch_names[i]
			new_idx[i] = input_labels_dict[channel_name]
			new_idx_name[i] = channel_name # tmp

			input_used[new_idx[i]] = 1
		else:
			finish_flag = 0
	
	if finish_flag == 1:
		print('Finish at stage 1,2 !')
		reorder_data(input_file, new_idx) # & save data to mapped.csv
		return
	
	
	
	# store channel positions in 2-d array
	template_pos = []
	template_pos_idx = []

	temporal_channels = []
	temporal_row_prefix = ['FC','C','CP','P']

	cnt = 0
	for i in range(7):
		tmp = []
		for j in range(5):
			if [i,j] in [[0,0],[0,2],[0,4],[6,0],[6,4]]:
				tmp.append('')
			else:
				tmp.append(template_montage.ch_names[cnt])
				template_pos_idx.append([i,j])

				if i>1 and j in [0,4]:
					temporal_channels.append(template_montage.ch_names[cnt])
				cnt += 1
		template_pos.append(tmp)
	
	
	
	# CZ
	template_CZ_idx = 14
	if new_idx[template_CZ_idx] == -1:
		min_dist = 1e5
		nearest_channel = 'CZ'
		for channel in input_montage.ch_names:
			cur_x, cur_y, cur_z = input_montage.get_positions()['ch_pos'][channel]
			if cur_x**2+cur_y**2 < min_dist and channel != 'CZ':
				nearest_channel = channel
				min_dist = cur_x**2+cur_y**2
		input_labels_dict['CZ'] = input_labels_dict[nearest_channel]



	finish_flag = 1

	if fill_mode == "zero":
		z_row_idx = len(input_montage.ch_names)

	for i in range(30):
		if new_idx[i] != -1:
			continue

		channel_name = template_montage.ch_names[i]
		channel_prefix = channel_name[:len(channel_name)-1]
		channel_suffix = -1 if channel_name[-1]=='Z' else int(channel_name[-1])

		# current target channel is in the middle
		if channel_suffix == -1:

			if fill_mode == "zero":
				new_idx[i] = z_row_idx

			elif fill_mode == "adjacent":

				if channel_prefix+str(1) in input_labels_dict: # ex: FCZ<-FC1
					new_idx[i] = input_labels_dict[channel_prefix+str(1)]
					new_idx_name[i] = channel_prefix+str(1) # tmp
				elif (channel_name in ['FCZ','CPZ']): # and ('CZ' in input_labels_dict): # ex: FCZ<-CZ
					new_idx[i] = input_labels_dict['CZ']
					new_idx_name[i] = 'CZ' # tmp
				elif channel_prefix+str(3) in input_labels_dict: # ex: FCZ<-FC3
					new_idx[i] = input_labels_dict[channel_prefix+str(3)]
					new_idx_name[i] = channel_prefix+str(3) # tmp
				else:
					new_idx[i] = input_labels_dict['CZ']
					new_idx_name[i] = 'CZ' # tmp

		# current target channel is in the left/right region
		else:
			try:
				# if the current target channel is a temporal channel
				potential_neighbor = temporal_row_prefix[temporal_channels.index(channel_name)//2]+str(5 if channel_suffix%2==1 else 6) # ex: FT7<-FC5
			except:
				potential_neighbor = channel_name[:len(channel_name)-1]+str(channel_suffix-2) # ex: FC3<-FC1, FC4<-FC2

			if (potential_neighbor in input_labels_dict) and (input_used[input_labels_dict[potential_neighbor]]==0):
				new_idx[i] = input_labels_dict[potential_neighbor]
				new_idx_name[i] = potential_neighbor # tmp

				input_used[new_idx[i]] = 1
			else:
				if fill_mode == "zero":
					new_idx[i] = z_row_idx
				elif fill_mode == "adjacent": # 先這樣暫時這樣...QQ
					mid_channel = template_pos[template_pos_idx[i][0]][2]
					mid_channel_idx = template_montage.ch_names.index(mid_channel)
					new_idx[i] = new_idx[mid_channel_idx]
					new_idx_name[i] = mid_channel # tmp

					#finish_flag = 0

		#if finish_flag == 1:
		#  print('Finish at stage 3,4 !')
		#  reorder_data(input_file, new_idx) # & save data to mapped.csv
		#  return
		#else:
		#  print('Error: the channel mapping process has failed!')
		reorder_data(input_file, new_idx)