Spaces:
Sleeping
Sleeping
File size: 12,124 Bytes
7129427 94bf054 7129427 a22369d 7129427 a22369d 884c10b 995c1d0 a22369d 884c10b 995c1d0 8f041e4 94bf054 8f041e4 a22369d f1a11e6 7129427 884c10b 995c1d0 a22369d 884c10b a22369d 884c10b a22369d 884c10b a22369d 94bf054 8f041e4 94bf054 a22369d 8f041e4 a22369d 8f041e4 7a54f74 94bf054 a22369d 7129427 a22369d 94bf054 7a54f74 a22369d 7a54f74 a22369d 884c10b a22369d 884c10b a22369d 7a54f74 a22369d 7a54f74 a22369d 94bf054 a22369d 94bf054 a22369d 884c10b a22369d 884c10b a22369d 884c10b a22369d 995c1d0 884c10b a22369d 884c10b a22369d 995c1d0 a22369d 995c1d0 884c10b a22369d 884c10b a22369d 94bf054 a22369d 94bf054 a22369d 7a54f74 7129427 a22369d 884c10b a22369d 884c10b 995c1d0 884c10b a22369d 884c10b a22369d 884c10b a22369d 884c10b 7129427 884c10b a22369d 94bf054 884c10b a22369d 884c10b 8f041e4 a22369d 7129427 a22369d 7129427 a22369d 995c1d0 a22369d 995c1d0 7129427 a22369d 94bf054 a22369d 7129427 a22369d 0ab020b a22369d 995c1d0 94bf054 884c10b a22369d 884c10b 995c1d0 884c10b 94bf054 a22369d 884c10b 7129427 a22369d 884c10b a22369d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import utils
import time
import os
import numpy as np
import gradio as gr
import mne
from mne.channels import read_custom_montage
from scipy.interpolate import Rbf
from scipy.optimize import linear_sum_assignment
from sklearn.neighbors import NearestNeighbors
def reorder_to_template(app_state, filename):
old_idx = app_state["stage1NewOrder"] if app_state["runnigState"]=="stage1" else app_state["stage2NewOrder"]
old_data = utils.read_train_data(filename) # original raw data
new_data = np.zeros((30, old_data.shape[1])) # reordered raw data
new_filename = app_state["filepath"]+'mapped.csv'
#print('new order 1:', app_state["stage1NewOrder"])
#print('new order 2:', app_state["stage2NewOrder"])
zero_arr = np.zeros((1, old_data.shape[1]))
old_data = np.concatenate((old_data, zero_arr), axis=0)
for i in range(30):
curr_idx_set = old_idx[i]
#print("channel_{}'s index set: {}".format(i, curr_idx_set))
if curr_idx_set == []:
new_data[i, :] = zero_arr
else:
tmp_data = [old_data[j, :] for j in curr_idx_set]
new_data[i, :] = np.mean(tmp_data, axis=0)
print('old.shape, new.shape: ', old_data.shape, new_data.shape)
utils.save_data(new_data, new_filename)
return
def reorder_to_origin(app_state, channel_info, filename, new_filename):
old_idx = app_state["stage1NewOrder"] if app_state["runnigState"]=="stage1" else app_state["stage2NewOrder"]
old_data = utils.read_train_data(filename) # denoised data
template_order = channel_info["templateByIndex"]
if app_state["runnigState"] == "stage1":
new_data = np.zeros((len(channel_info["inputByName"]), old_data.shape[1]))
else:
new_data = utils.read_train_data(new_filename)
for i, channel in enumerate(template_order):
idx_set = old_idx[i]
# ignore if this channel doesn't exist
if len(idx_set)==1 and channel_info["templateByName"][channel]["matched"]==True:
new_data[idx_set[0], :] = old_data[i, :]
print('old.shape, new.shape: ', old_data.shape, new_data.shape)
utils.save_data(new_data, new_filename)
return
class Channel:
def __init__(self, index, name=None, matched=False, assigned=False, coord=None, css_position=None):
self.name = name
self.index = index
self.matched = matched
self.assigned = assigned # for input channels
self.coord = coord
self.css_position = css_position
def read_montage_data(loc_file):
template_montage = read_custom_montage("./template_chanlocs.loc")
input_montage = read_custom_montage(loc_file)
template_dict = {}
input_dict = {}
montages = [template_montage, input_montage]
dicts = [template_dict, input_dict]
num = [30, len(input_montage.ch_names)]
for i in range(2):
for j in range(num[i]):
channel = montages[i].ch_names[j]
montages[i].rename_channels({channel: str.upper(channel)}) # convert all channel names to uppercase
channel = str.upper(channel)
dicts[i][channel] = Channel(index=j, name=channel, coord=montages[i].get_positions()['ch_pos'][channel])
return template_montage, input_montage, template_dict, input_dict
def align_coords(channel_info, template_montage, input_montage):
template_dict = channel_info["templateByName"]
input_dict = channel_info["inputByName"]
template_order = channel_info["templateByIndex"]
input_order = channel_info["inputByIndex"]
matched = [channel for channel in input_dict if input_dict[channel]["matched"]==True]
# 2-d (fot the indication of missing template channel's position when fill_mode:'mean_manual')
fig = [template_montage.plot(), input_montage.plot()]
fig[0].set_size_inches(5.6, 5.6)
fig[1].set_size_inches(5.6, 5.6)
ax = [fig[0].axes[0], fig[1].axes[0]]
ax[0].set_aspect('equal')
ax[1].set_aspect('equal')
ax[0].figure.canvas.draw() #update the figure
ax[1].figure.canvas.draw()
# get the original coords
all_tpl = ax[0].transData.transform(ax[0].collections[0].get_offsets().data) # display coords (px)
all_in= ax[1].transData.transform(ax[1].collections[0].get_offsets().data)
matched_tpl = np.array([all_tpl[template_dict[channel]["index"]] for channel in matched])
matched_in = np.array([all_in[input_dict[channel]["index"]] for channel in matched])
# transform the xy axis (template's -> input's)
rbf_x = Rbf(matched_tpl[:,0], matched_tpl[:,1], matched_in[:,0], function='thin_plate')
rbf_y = Rbf(matched_tpl[:,0], matched_tpl[:,1], matched_in[:,1], function='thin_plate')
# apply to all template channels
transformed_tpl_x = rbf_x(all_tpl[:,0], all_tpl[:,1])
transformed_tpl_y = rbf_y(all_tpl[:,0], all_tpl[:,1])
#transformed_tpl = np.vstack((transformed_tpl_x, transformed_tpl_y)).T
# update input, template's position
for i, channel in enumerate(template_order):
css_left = (transformed_tpl_x[i]-11)/560
css_bottom = (transformed_tpl_y[i]-7)/560
template_dict[channel]["css_position"] = [str(round(css_left*100, 2))+"%", str(round(css_bottom*100, 2))+"%"]
for i, channel in enumerate(input_order):
css_left = (all_in[i][0]-11)/560
css_bottom = (all_in[i][1]-7)/560
input_dict[channel]["css_position"] = [str(round(css_left*100, 2))+"%", str(round(css_bottom*100, 2))+"%"]
# 3-d (to use KNN)
# get the original coords
all_tpl = np.array([template_dict[channel]["coord"].tolist() for channel in template_order])
all_in = np.array([input_dict[channel]["coord"].tolist() for channel in input_order])
matched_tpl = np.array([all_tpl[template_dict[channel]["index"]] for channel in matched])
matched_in = np.array([all_in[input_dict[channel]["index"]] for channel in matched])
# transform the xyz axis (input's -> template's)
rbf_x = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,0], function='thin_plate')
rbf_y = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,1], function='thin_plate')
rbf_z = Rbf(matched_in[:,0], matched_in[:,1], matched_in[:,2], matched_tpl[:,2], function='thin_plate')
# apply to all input channels
transformed_in_x = rbf_x(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in_y = rbf_y(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in_z = rbf_z(all_in[:,0], all_in[:,1], all_in[:,2])
transformed_in = np.vstack((transformed_in_x, transformed_in_y, transformed_in_z)).T
# update input's position
for i, channel in enumerate(input_order):
input_dict[channel]["coord"] = transformed_in[i].tolist()
channel_info.update({
"templateByName" : template_dict,
"inputByName" : input_dict,
})
return channel_info
def fill_channels(app_state, channel_info, fill_mode):
new_idx = app_state["stage1NewOrder"] if app_state["runnigState"]=="stage1" else app_state["stage2NewOrder"]
template_dict = channel_info["templateByName"]
input_dict = channel_info["inputByName"]
template_order = channel_info["templateByIndex"]
input_order = channel_info["inputByIndex"]
z_row_idx = channel_info["dataShape"][0]
unmatched = [channel for channel in template_dict if template_dict[channel]["matched"]==False]
if unmatched == []:
return app_state
if fill_mode == 'zero':
for channel in unmatched:
idx = template_dict[channel]["index"]
new_idx[idx] = [z_row_idx]
elif fill_mode == 'mean_auto':
# use KNN to choose k nearest channels
in_coords = [input_dict[channel]["coord"] for channel in input_order]
in_coords = np.array([in_coords[i] for i in range(len(in_coords))])
k = 4 if len(input_dict)>4 else len(input_dict)
knn = NearestNeighbors(n_neighbors=k, metric='euclidean')
knn.fit(in_coords)
for channel in unmatched:
distances, indices = knn.kneighbors(np.array(template_dict[channel]["coord"]).reshape(1,-1))
selected = [input_order[i] for i in indices[0]]
print(channel, ':', selected)
idx = template_dict[channel]["index"]
new_idx[idx] = indices[0].tolist()
if app_state["runnigState"] == "stage1":
app_state["stage1NewOrder"] = new_idx
else:
app_state["stage2NewOrder"] = new_idx
return app_state
def mapping_stage1(app_state, channel_info, data_file, loc_file, fill_mode):
second1 = time.time()
template_montage, input_montage, template_dict, input_dict = read_montage_data(loc_file)
template_order = template_montage.ch_names
new_idx = [[]]*30
missing_channels = []
alias = {
'T3': 'T7',
'T4': 'T8',
'T5': 'P7',
'T6': 'P8',
#'TP7': 'T5\'',
#'TP8': 'T6\'',
}
# match the names of input channels -> template channels
for i, channel in enumerate(template_order):
if channel in alias and alias[channel] in input_dict:
template_montage.rename_channels({channel: alias[channel]})
template_dict[alias[channel]] = template_dict.pop(channel)
template_dict[alias[channel]].name = alias[channel]
channel = alias[channel]
if channel in input_dict:
new_idx[i] = [input_dict[channel].index]
template_dict[channel].matched = True
input_dict[channel].matched = True
input_dict[channel].assigned = True
else:
missing_channels.append(i)
channel_info.update({
"missingChannelsIndex" : missing_channels,
"templateByName" : {k : v.__dict__ for k,v in template_dict.items()},
"inputByName" : {k : v.__dict__ for k,v in input_dict.items()},
"templateByIndex" : template_montage.ch_names,
"inputByIndex" : input_montage.ch_names
})
app_state.update({
"stage1NewOrder" : new_idx,
"runnigState" : "stage1"
})
# align input, template's coordinates
channel_info = align_coords(channel_info, template_montage, input_montage)
# fill the unmatched channels
app_state = fill_channels(app_state, channel_info, fill_mode)
second2 = time.time()
print('Mapping (stage1) finished in',second2 - second1,'s.')
return app_state, channel_info
def mapping_stage2(app_state, channel_info, fill_mode):
second1 = time.time()
template_dict = channel_info["templateByName"]
input_dict = channel_info["inputByName"]
template_order = channel_info["templateByIndex"]
unassigned = [channel for channel in input_dict if input_dict[channel]["assigned"]==False]
if unassigned == []:
app_state["runnigState"] = "finished"
return app_state, channel_info
tpl_coords = np.array([template_dict[channel]["coord"] for channel in template_order])
unassigned_coords = np.array([input_dict[channel]["coord"] for channel in unassigned])
# set all tpl.matched to False
for channel in template_dict:
template_dict[channel]["matched"] = False
# initialize the cost matrix
if len(unassigned) < 30:
cost_matrix = np.full((30, 30), 1e6) # add dummy channels to ensure num_col > num_row
else:
cost_matrix = np.zeros((30, len(unassigned)))
for i in range(30):
for j in range(len(unassigned)):
cost_matrix[i][j] = np.linalg.norm((tpl_coords[i]-unassigned_coords[j])*1000) # Euclidean distance
#print(cost_matrix[i][j], tpl_coords[i] - unassigned_coords[j])
# use Hungarian Algorithm to find the minimum sum of distance of (input's coord to template's coord)...?
row_idx, col_idx = linear_sum_assignment(cost_matrix)
matches = []
new_idx = [[]]*30
for i in range(30):
if col_idx[i] < len(unassigned): # filter out dummy channels
matches.append([row_idx[i], col_idx[i]])
tpl_channel = template_order[row_idx[i]]
in_channel = unassigned[col_idx[i]]
template_dict[tpl_channel]["matched"] = True
input_dict[in_channel]["assigned"] = True
new_idx[i] = [input_dict[in_channel]["index"]]
print(template_order[row_idx[i]], '<-', unassigned[col_idx[i]])
channel_info.update({
"templateByName" : template_dict,
"inputByName" : input_dict
})
app_state.update({
"stage2NewOrder" : new_idx,
"runnigState" : "stage2"
})
# fill the unmatched channels
app_state = fill_channels(app_state, channel_info, fill_mode)
second2 = time.time()
print(f'Mapping (stage2-{app_state["batchCount"]-1}) finished in {second2 - second1}s.')
return app_state, channel_info
|