File size: 18,528 Bytes
b9eaea7
 
4728dd2
f1a11e6
a22369d
4728dd2
a22369d
b9eaea7
fe4e8b5
 
94ae045
f1a11e6
dfff50a
 
 
 
a22369d
dfff50a
 
29201f7
 
dfff50a
 
 
 
29201f7
 
 
a22369d
 
dfff50a
a71a552
a22369d
29201f7
 
 
 
 
fe4e8b5
 
 
dfff50a
 
fe4e8b5
 
b9eaea7
7a54f74
884c10b
 
 
 
7a54f74
a22369d
 
7a54f74
 
 
995c1d0
7a54f74
a22369d
 
884c10b
 
 
 
 
a22369d
884c10b
 
 
 
 
 
 
 
 
 
 
a22369d
884c10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a54f74
a22369d
 
884c10b
7a54f74
884c10b
 
 
 
 
7a54f74
 
 
 
 
 
 
a22369d
884c10b
a22369d
 
 
884c10b
 
 
 
 
a22369d
884c10b
 
 
 
7a54f74
884c10b
 
 
 
 
 
 
 
 
 
 
a22369d
884c10b
 
 
 
 
 
 
 
 
 
 
 
 
 
7a54f74
 
 
29201f7
fe4e8b5
 
884c10b
 
fe4e8b5
 
 
f1a11e6
a22369d
f1a11e6
fe4e8b5
 
a22369d
fe4e8b5
 
f1a11e6
 
 
fe4e8b5
a22369d
 
fe4e8b5
f1a11e6
 
a22369d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a11e6
 
 
 
 
 
fe4e8b5
 
a22369d
884c10b
 
 
a22369d
fe4e8b5
 
f1a11e6
7a54f74
f1a11e6
fe4e8b5
 
a22369d
 
 
 
 
 
 
 
fe4e8b5
 
 
a22369d
995c1d0
f1a11e6
fe4e8b5
 
a22369d
fe4e8b5
 
 
 
 
a22369d
fe4e8b5
f1a11e6
 
fe4e8b5
7a54f74
fe4e8b5
995c1d0
f1a11e6
fe4e8b5
 
 
 
 
 
29201f7
a22369d
884c10b
a22369d
884c10b
7a54f74
995c1d0
a22369d
884c10b
 
 
a22369d
7a54f74
884c10b
 
 
a22369d
7a54f74
fe4e8b5
 
7a54f74
f1a11e6
995c1d0
 
fe4e8b5
884c10b
a22369d
884c10b
 
a22369d
884c10b
a22369d
 
 
f1a11e6
884c10b
 
fe4e8b5
884c10b
fe4e8b5
884c10b
 
7a54f74
fe4e8b5
995c1d0
 
 
884c10b
f1a11e6
fe4e8b5
 
884c10b
 
 
 
 
fe4e8b5
7a54f74
 
f1a11e6
 
 
 
884c10b
f1a11e6
995c1d0
f1a11e6
7a54f74
 
f1a11e6
884c10b
fe4e8b5
884c10b
f1a11e6
995c1d0
06edee1
 
884c10b
 
06edee1
 
7a54f74
 
06edee1
884c10b
7a54f74
 
fe4e8b5
884c10b
 
f1a11e6
884c10b
 
 
 
 
f1a11e6
884c10b
 
 
 
a22369d
f1a11e6
 
884c10b
fe4e8b5
 
f1a11e6
995c1d0
a22369d
995c1d0
 
a22369d
f1a11e6
a22369d
884c10b
 
f1a11e6
 
 
884c10b
 
f1a11e6
 
 
884c10b
 
f1a11e6
 
 
884c10b
 
a22369d
7a54f74
 
 
884c10b
7a54f74
f1a11e6
fe4e8b5
 
884c10b
a22369d
7a54f74
a22369d
884c10b
 
a22369d
884c10b
995c1d0
a22369d
884c10b
 
 
a22369d
 
 
 
884c10b
 
 
 
 
 
 
 
7a54f74
884c10b
 
a22369d
 
 
884c10b
 
 
 
a22369d
 
 
 
fe4e8b5
f1a11e6
a22369d
884c10b
 
a22369d
f1a11e6
884c10b
 
 
 
 
 
 
 
 
f1a11e6
a22369d
995c1d0
 
 
 
 
 
 
884c10b
a22369d
fe4e8b5
f1a11e6
995c1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
884c10b
 
995c1d0
 
884c10b
a22369d
884c10b
a22369d
 
 
 
995c1d0
 
 
 
 
 
a22369d
995c1d0
 
884c10b
995c1d0
 
 
 
 
 
 
 
fe4e8b5
995c1d0
 
 
 
 
a22369d
b9eaea7
995c1d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import gradio as gr
import numpy as np
import os
import random
import math
import utils
from channel_mapping import mapping_stage1, mapping_stage2, reorder_to_template, reorder_to_origin

import mne
from mne.channels import read_custom_montage

quickstart = """
# Quickstart

### Raw data
1. The data need to be a two-dimensional array (channel, timepoint).
2. Upload your EEG data in `.csv` format.

### Channel locations
Upload your data's channel locations in `.loc` format, which can be obtained using **EEGLAB**.  
>If you cannot obtain it, we recommend you to download the standard montage <a href="">here</a>. If the channels in those files doesn't match yours, you can use **EEGLAB** to modify them to your needed montage.

### Imputation
The models was trained using the EEG signals of 30 channels, including: `Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2`.
We expect your input data to include these channels as well.  
If your data doesn't contain all of the mentioned channels, there are 3 imputation ways you can choose from:

- **zero**: fill the missing channels with zeros.
- **mean(auto)**: select 4 neareat channels for each missing channels, and we will average their values.
- **mean(manual)**: select the channels you wish to use for imputing the required one, and we will average their values. If you select nothing, zeros will be imputed. For example, you didn't have **FCZ** and you choose **FC1, FC2, FZ, CZ** to impute it(depending on the channels you have), we will compute the mean of these 4 channels and assign this new value to **FCZ**.

### Mapping result
Once the mapping process is finished, the **template montage** and the **input montage**(with the matched channels displaying their names) will be shown.

### Model
Select the model you want to use.  
The detailed description of the models can be found in other pages.

"""

icunet = """
# IC-U-Net
### Abstract
Electroencephalography (EEG) signals are often contaminated with artifacts. It is imperative to develop a practical and reliable artifact removal method to prevent the misinterpretation of neural signals and the underperformance of brain–computer interfaces. Based on the U-Net architecture, we developed a new artifact removal model, IC-U-Net, for removing pervasive EEG artifacts and reconstructing brain signals. IC-U-Net was trained using mixtures of brain and non-brain components decomposed by independent component analysis. It uses an ensemble of loss functions to model complex signal fluctuations in EEG recordings. The effectiveness of the proposed method in recovering brain activities and removing various artifacts (e.g., eye blinks/movements, muscle activities, and line/channel noise) was demonstrated in a simulation study and four real-world EEG experiments. IC-U-Net can reconstruct a multi-channel EEG signal and is applicable to most artifact types, offering a promising end-to-end solution for automatically removing artifacts from EEG recordings. It also meets the increasing need to image natural brain dynamics in a mobile setting.
"""

chkbox_js = """
(app_state, channel_info) => {
	app_state = JSON.parse(JSON.stringify(app_state));
	channel_info = JSON.parse(JSON.stringify(channel_info));
	if(app_state.state == "finished") return;
	
	// add figure of in_montage
	document.querySelector("#chkbox-group> div:nth-of-type(2)").style.cssText = `
		position: relative;
		width: 560px;
		height: 560px;
		background: url("file=${app_state.filenames.raw_montage}");
	`;
	
	
	// add indication for the missing channels
	let channel = channel_info.missingChannelsIndex[0]
	channel = channel_info.templateByIndex[channel]
	let left = channel_info.templateByName[channel].css_position[0];
	let bottom = channel_info.templateByName[channel].css_position[1];
	
	let rule = `
		#chkbox-group> div:nth-of-type(2)::after{
			content: '';
			position: absolute;
			background-color: red;
			width: 10px;
			height: 10px;
			border-radius: 50%;
			left: ${left};
			bottom: ${bottom};
		}
	`;
	
	// check if indicator already exist
	let exist = 0;
	const styleSheet = document.styleSheets[0];
	for(let i=0; i<styleSheet.cssRules.length; i++){
		if(styleSheet.cssRules[i].selectorText == "#chkbox-group> div:nth-of-type(2)::after"){
			exist = 1;
			console.log('exist!');
			styleSheet.deleteRule(i);
			styleSheet.insertRule(rule, styleSheet.cssRules.length);
			break;
		}
	}
	if(exist == 0) styleSheet.insertRule(rule, styleSheet.cssRules.length);


	// move the checkboxes
	let all_chkbox = document.querySelectorAll("#chkbox-group> div:nth-of-type(2)> label");
	//all_chkbox = Array.apply(null, all_chkbox);
	
	Array.from(all_chkbox).forEach((item, index) => {
		channel = channel_info.inputByIndex[index];
		left = channel_info.inputByName[channel].css_position[0];
		bottom = channel_info.inputByName[channel].css_position[1];
		console.log(`left: ${left}, bottom: ${bottom}`);
		
		item.style.cssText = `
			position: absolute;
			left: ${left};
			bottom: ${bottom};
		`;
		item.className = "";
		item.querySelector(":scope> span").innerText = "";
	});
}
"""

indication_js = """
(app_state, channel_info) => {
	app_state = JSON.parse(JSON.stringify(app_state));
	channel_info = JSON.parse(JSON.stringify(channel_info));
	if(app_state.state == "finished") return;
	
	let channel = channel_info.missingChannelsIndex[app_state["fillingCount"]-1]
	channel = channel_info.templateByIndex[channel]
	let left = channel_info.templateByName[channel].css_position[0];
	let bottom = channel_info.templateByName[channel].css_position[1];
	
	let rule = `
		#chkbox-group> div:nth-of-type(2)::after{
			content: '';
			position: absolute;
			background-color: red;
			width: 10px;
			height: 10px;
			border-radius: 50%;
			left: ${left};
			bottom: ${bottom};
		}
	`;
	
	// check if indicator already exist
	let exist = 0;
	const styleSheet = document.styleSheets[0];
	for(let i=0; i<styleSheet.cssRules.length; i++){
		if(styleSheet.cssRules[i].selectorText == "#chkbox-group> div:nth-of-type(2)::after"){
			exist = 1;
			console.log('exist!');
			styleSheet.deleteRule(i);
			styleSheet.insertRule(rule, styleSheet.cssRules.length);
			break;
		}
	}
	if(exist == 0) styleSheet.insertRule(rule, styleSheet.cssRules.length);
}
"""


with gr.Blocks() as demo:

	app_state_json = gr.JSON(visible=False)
	channel_info_json = gr.JSON(visible=False)

	with gr.Row():
		gr.Markdown(
			"""
			<p style="text-align: center;">(...)</p>
			"""
		)
	with gr.Row():

		with gr.Column():
			gr.Markdown(
				"""
				# 1.Channel Mapping
				"""
			)

			# upload files, chose imputation way (???
			with gr.Row():
				in_raw_data = gr.File(label="Raw data (.csv)", file_types=[".csv"])
				in_raw_loc = gr.File(label="Channel locations (.loc, .locs)", file_types=[".loc", "locs"])
				with gr.Column(min_width=100):
					in_sample_rate = gr.Textbox(label="Sampling rate (Hz)")
					in_fill_mode = gr.Dropdown(choices=[
										#("adjacent channel", "adjacent"),
										("mean (auto)", "mean_auto"),
										("mean (manual)", "mean_manual"),
										("",""),
										"zero"],
										value="mean_auto",
										label="Imputation")
					map_btn = gr.Button("Mapping")
			
			chkbox_group = gr.CheckboxGroup(elem_id="chkbox-group", label="", visible=False)
			next_btn = gr.Button("Next", interactive=False, visible=False)
			
			# mapping result
			res_md = gr.Markdown(
						"""
						### Mapping result:
						""",
						visible=False
					)
			with gr.Row():
				tpl_montage = gr.Image("./template_montage.png", label="Template montage", visible=False)
				map_montage = gr.Image(label="Matched channels", visible=False)
			
			#miss_txtbox = gr.Textbox(label="Missing channels", visible=False)
			#tpl_loc_file = gr.File("./template_chanlocs.loc", show_label=False, visible=False)

		with gr.Column():
			gr.Markdown(
				"""
				# 2.Decode Data
				"""
			)
			with gr.Row():
				in_model_name = gr.Dropdown(choices=[
									("ART", "EEGART"),
									("IC-U-Net", "ICUNet"),
									("IC-U-Net++", "UNetpp"),
									("IC-U-Net-Attn", "AttUnet"),
									"(mapped data)",
									"(denoised data)"],
									value="EEGART",
									label="Model",
									scale=2)
				run_btn = gr.Button(scale=1, interactive=False)
			batch_md = gr.Markdown(visible=False)
			out_denoised_data = gr.File(label="Denoised data", visible=False)
	
				
	with gr.Row():
		with gr.Tab("ART"):
			gr.Markdown()
		with gr.Tab("IC-U-Net"):
			gr.Markdown(icunet)
		with gr.Tab("IC-U-Net++"):
			gr.Markdown()
		with gr.Tab("IC-U-Net-Attn"):
			gr.Markdown()
		with gr.Tab("QuickStart"):
			gr.Markdown(quickstart)
    
	#demo.load(js=js)
	
	def reset1(raw_data, samplerate):
		# establish temp folder
		filepath = os.path.dirname(str(raw_data))
		try:
			os.mkdir(filepath+"/temp_data/")
		except OSError as e:
			utils.dataDelete(filepath+"/temp_data/")
			os.mkdir(filepath+"/temp_data/")
			#print(e)
		
		# initialize app_state, channel_info
		data = utils.read_train_data(raw_data)
		app_state = {
			"filepath": filepath+"/temp_data/",
			"filenames": {},
			"sampleRate": int(samplerate),
			
		}
		channel_info = {
			"dataShape" : data.shape
		}
		
		return {app_state_json : app_state,
				channel_info_json : channel_info,
				chkbox_group : gr.CheckboxGroup(choices=[], value=[], label="", visible=False),
				next_btn : gr.Button("Next", interactive=False, visible=False),
				run_btn : gr.Button(interactive=False),
				tpl_montage : gr.Image(visible=False),
				map_montage : gr.Image(value=None, visible=False),
				res_md : gr.Markdown(visible=False),
				batch_md : gr.Markdown(visible=False),
				out_denoised_data : gr.File(visible=False)}
    	
	def mapping_result(app_state, channel_info, fill_mode):
	
		in_num = len(channel_info["inputByName"])
		matched_num = 30 - len(channel_info["missingChannelsIndex"])
		batch_num = math.ceil((in_num-matched_num)/30) + 1
		app_state.update({
			"batchCount" : 1,
			"totalBatchNum" : batch_num
		})
		
		if fill_mode=="mean_manual" and channel_info["missingChannelsIndex"]!=[]:
			app_state.update({
				"state" : "initializing",
				"totalFillingNum" : len(channel_info["missingChannelsIndex"])
			})
			#print("Missing channels:", channel_info["missingChannelsIndex"])
			return {app_state_json : app_state,
					next_btn : gr.Button(visible=True)}
		else:
			app_state.update({
				"state" : "finished"
			})
			return {app_state_json : app_state,
					res_md : gr.Markdown(visible=True),
					run_btn : gr.Button(interactive=True)}
	
	def show_montage(app_state, channel_info, raw_loc):
		if app_state["state"] == "selecting":
			return {app_state_json : app_state} # change nothing
			
		filepath = app_state["filepath"]
		raw_montage = read_custom_montage(raw_loc)
		
		# convert all channel names to uppercase
		for i in range(len(raw_montage.ch_names)):
			channel = raw_montage.ch_names[i]
			raw_montage.rename_channels({channel: str.upper(channel)})
		
		if app_state["state"] == "initializing":
			filename = filepath+"raw_montage_"+str(random.randint(1,10000))+".png"
			app_state["filenames"]["raw_montage"] = filename
			raw_fig = raw_montage.plot()
			raw_fig.set_size_inches(5.6, 5.6)
			raw_fig.savefig(filename, pad_inches=0)
			
			return {app_state_json : app_state}
		
		elif app_state["state"] == "finished":
			filename = filepath+"mapped_montage_"+str(random.randint(1,10000))+".png"
			app_state["filenames"]["map_montage"] = filename
			
			show_names= []
			for channel in channel_info["inputByName"]:
			    if channel_info["inputByName"][channel]["matched"]:
			        show_names.append(channel)
			mapped_fig = raw_montage.plot(show_names=show_names)
			mapped_fig.set_size_inches(5.6, 5.6)
			mapped_fig.savefig(filename, pad_inches=0)
			
			return {app_state_json : app_state,
					tpl_montage : gr.Image(visible=True),
					map_montage : gr.Image(value=filename, visible=True)}
					
		#else:
			#return {app_state_json : app_state} # change nothing
	
	def generate_chkbox(app_state, channel_info):
		if app_state["state"] == "initializing":
			in_channels = [channel for channel in channel_info["inputByName"]]
			app_state["state"] = "selecting"
			app_state["fillingCount"] = 1
			
			idx = channel_info["missingChannelsIndex"][0]
			name = channel_info["templateByIndex"][idx]
			chkbox_label = name+' (1/'+str(app_state["totalFillingNum"])+')'
			return {app_state_json : app_state,
					chkbox_group : gr.CheckboxGroup(choices=in_channels, label=chkbox_label, visible=True),
					next_btn : gr.Button(interactive=True)}
		else:
			return {app_state_json : app_state} # change nothing

	
	map_btn.click(
	    fn = reset1,
	    inputs = [in_raw_data, in_sample_rate],
		outputs = [app_state_json, channel_info_json, chkbox_group, next_btn, run_btn,
					tpl_montage, map_montage, res_md, batch_md, out_denoised_data]
					
	).success(
		fn = mapping_stage1, 
		inputs = [app_state_json, channel_info_json, in_raw_data, in_raw_loc, in_fill_mode], 
		outputs = [app_state_json, channel_info_json]
		
	).success(
		fn = mapping_result, 
		inputs = [app_state_json, channel_info_json, in_fill_mode], 
		outputs = [app_state_json, next_btn, res_md, run_btn]
		
	).success(
		fn = show_montage, 
		inputs = [app_state_json, channel_info_json, in_raw_loc], 
		outputs = [app_state_json, tpl_montage, map_montage]
		
	).success(
		fn = generate_chkbox, 
		inputs = [app_state_json, channel_info_json], 
		outputs = [app_state_json, chkbox_group, next_btn]
		
	).success(
		fn = None,
		js = chkbox_js,
		inputs = [app_state_json, channel_info_json],
		outputs = []
	)
    

	def check_next(app_state, channel_info, selected, raw_data, fill_mode):
		#if state["state"] == "selecting":
			
		# save info before clicking on next_btn
		prev_target_idx = channel_info["missingChannelsIndex"][app_state["fillingCount"]-1]
		prev_target_name = channel_info["templateByIndex"][prev_target_idx]
		
		selected_idx = [channel_info["inputByName"][channel]["index"] for channel in selected]
		app_state["stage1NewOrder"][prev_target_idx] = selected_idx
		
		#if len(selected)==1 and channel_info["inputByName"][selected[0]]["used"]==False:
			#channel_info["inputByName"][selected[0]]["used"] = True
			#channel_info["missingChannelsIndex"][state["fillingCount"]-1] = -1
		
		print('Selection for missing channel "{}"({}): {}'.format(prev_target_name, prev_target_idx, selected))
		
		# update next round
		app_state["fillingCount"] += 1
		
		if app_state["fillingCount"] <= app_state["totalFillingNum"]:
			target_idx = channel_info["missingChannelsIndex"][app_state["fillingCount"]-1]
			target_name = channel_info["templateByIndex"][target_idx]
			
			chkbox_label = target_name+' ('+str(app_state["fillingCount"])+'/'+str(app_state["totalFillingNum"])+')'
			btn_label = "Submit" if app_state["fillingCount"]==app_state["totalFillingNum"] else "Next"
			
			return {app_state_json : app_state,
					#channel_info_json : channel_info,
					chkbox_group : gr.CheckboxGroup(value=[], label=chkbox_label),
					next_btn : gr.Button(btn_label)}
		else:
			app_state["state"] = "finished"
			
			return {app_state_json : app_state,
					#channel_info_json : channel_info,
					chkbox_group : gr.CheckboxGroup(visible=False),
					next_btn : gr.Button(visible=False),
					res_md : gr.Markdown(visible=True),
					run_btn : gr.Button(interactive=True)}
	
	next_btn.click(
	    fn = check_next,
	    inputs = [app_state_json, channel_info_json, chkbox_group, in_raw_data, in_fill_mode],
	    outputs = [app_state_json, chkbox_group, next_btn, run_btn, res_md]
	
	).success(
	    fn = show_montage,
	    inputs = [app_state_json, channel_info_json, in_raw_loc],
		outputs = [app_state_json, tpl_montage, map_montage]
		
	).success(
		fn = None,
		js = indication_js,
		inputs = [app_state_json, channel_info_json],
		outputs = []
	)
	
	def delete_file(filename):
		try:
			os.remove(filename)
		except OSError as e:
			print(e)
	
	def reset2(app_state, raw_data, model_name):
		filepath = app_state["filepath"]
		input_name = os.path.basename(str(raw_data))
		output_name = os.path.splitext(input_name)[0]+'_'+model_name+'.csv'
		
		app_state["filenames"]["denoised"] = filepath + output_name
		app_state.update({
			"runnigState" : "stage1",
			"batchCount" : 1,
			"stage2NewOrder" : [[]]*30
		})
		
		delete_file(filepath+'mapped.csv')
		delete_file(filepath+'denoised.csv')
		return {app_state_json : app_state,
				run_btn : gr.Button(interactive=False),
				batch_md : gr.Markdown(visible=False),
				out_denoised_data : gr.File(visible=False)}
	
	def run_model(app_state, channel_info, raw_data, model_name, fill_mode):
		filepath = app_state["filepath"]
		samplerate = app_state["sampleRate"]
		new_filename = app_state["filenames"]["denoised"]
		
		while app_state["runnigState"] != "finished":
			#if app_state["batchCount"] > app_state["totalBatchNum"]:
				#app_state["runnigState"] = "finished"
				#break
			md = 'Running model('+str(app_state["batchCount"])+'/'+str(app_state["totalBatchNum"])+')...'
			yield {batch_md : gr.Markdown(md, visible=True)}
			
			if app_state["batchCount"] > 1:
				app_state, channel_info = mapping_stage2(app_state, channel_info, fill_mode)
				if app_state["runnigState"] == "finished":
					break
			app_state["batchCount"] += 1
			
			reorder_to_template(app_state, raw_data)
			# step1: Data preprocessing
			total_file_num = utils.preprocessing(filepath, 'mapped.csv', samplerate)
			# step2: Signal reconstruction
			utils.reconstruct(model_name, total_file_num, filepath, 'denoised.csv', samplerate)
			reorder_to_origin(app_state, channel_info, filepath+'denoised.csv', new_filename)
			
			#if model_name == "(mapped data)":
				#return {out_denoised_data : filepath + 'mapped.csv'}
			#elif model_name == "(denoised data)":
				#return {out_denoised_data : filepath + 'denoised.csv'}
			
			delete_file(filepath+'mapped.csv')
			delete_file(filepath+'denoised.csv')
			
		yield {run_btn : gr.Button(interactive=True),
				batch_md : gr.Markdown(visible=False),
				out_denoised_data : gr.File(new_filename, visible=True)}
	
	run_btn.click(
		fn = reset2,
		inputs = [app_state_json, in_raw_data, in_model_name],
		outputs = [app_state_json, run_btn, batch_md, out_denoised_data]
		
	).success(
		fn = run_model,
		inputs = [app_state_json, channel_info_json, in_raw_data, in_model_name, in_fill_mode],
		outputs = [run_btn, batch_md, out_denoised_data]
	)
	
if __name__ == "__main__":
    demo.launch()