File size: 13,039 Bytes
49e5e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import numpy as np
import ChatTTS
import re
DEFAULT_TTS_MODEL_NAME = "HKUSTAudio/LLasa-1B"
DEMO_EXAMPLES = [
    ["太乙真人.wav", "对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"],
    ["邓紫棋.wav", "特别大的不同,因为以前在香港是过年的时候,我们可能见到的亲戚都是爸爸那边的亲戚"],
    ["雷军.wav", "这是个好问题,我把来龙去脉给你简单讲,就是这个社会对小米有很多的误解,有很多的误解,呃,也能理解啊,就是小米这个模式呢"],
    ["Taylor Swift.wav", "It's actually uh, it's a concept record, but it's my first directly autobiographical album in a while because the last album that I put out was, uh, a rework."]
]
class TTSapi:
    def __init__(self, 
                 model_name=DEFAULT_TTS_MODEL_NAME, 
                 codec_model_name="HKUST-Audio/xcodec2", 
                 device=torch.device("cuda:0")):

        self.reload(model_name, codec_model_name, device)
        
    def reload(self, 
               model_name=DEFAULT_TTS_MODEL_NAME, 
               codec_model_name="HKUST-Audio/xcodec2",
               device=torch.device("cuda:0")):
        if 'llasa' in model_name.lower():
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            self.model.eval().to(device)
    
            self.codec_model = XCodec2Model.from_pretrained(codec_model_name)
            self.codec_model.eval().to(device)
            self.device = device
            self.codec_model_name = codec_model_name
            self.sr = 16000
        elif 'chattts' in model_name.lower():
            self.model = ChatTTS.Chat()
            self.model.load(compile=False) # Set to True for better performance but would l significantly reduce the loading speed
            self.sr = 24000
            self.punctuation = r'[,,.。??!!~~;;]'
        else:
            raise ValueError(f'不支持的TTS模型:{model_name}')
        
        self.model_name = model_name
        
    def ids_to_speech_tokens(self, speech_ids):
        speech_tokens_str = []
        for speech_id in speech_ids:
            speech_tokens_str.append(f"<|s_{speech_id}|>")
        return speech_tokens_str

    def extract_speech_ids(self, speech_tokens_str):
        speech_ids = []
        for token_str in speech_tokens_str:
            if token_str.startswith('<|s_') and token_str.endswith('|>'):
                num_str = token_str[4:-2]

                num = int(num_str)
                speech_ids.append(num)
            else:
                print(f"Unexpected token: {token_str}")
        return speech_ids

 
    def forward(self, input_text, speech_prompt=None, save_path='wavs/generated/gen.wav'):
        #TTS start!
        with torch.no_grad():
            if 'chattts' in self.model_name.lower():
                # rand_spk = chat.sample_random_speaker()
                # print(rand_spk) # save it for later timbre recovery

                # params_infer_code = ChatTTS.Chat.InferCodeParams(
                #     spk_emb = rand_spk, # add sampled speaker 
                #     temperature = .3,   # using custom temperature
                #     top_P = 0.7,        # top P decode
                #     top_K = 20,         # top K decode
                # )
                break_num = max(min(len(re.split(self.punctuation, input_text)), 7), 2)
                params_refine_text = ChatTTS.Chat.RefineTextParams(
                    prompt=f'[oral_2][laugh_0][break_{break_num}]',
                )
                wavs = self.model.infer([input_text],
                                params_refine_text=params_refine_text,
                            )
                gen_wav_save = wavs[0]
                sf.write(save_path, gen_wav_save, 24000)
                
            else:   
                if speech_prompt:
                    # only 16khz speech support!
                    prompt_wav, sr = sf.read(speech_prompt)   # you can find wav in Files
                    prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
                    
                    # Encode the prompt wav
                    vq_code_prompt = self.codec_model.encode_code(input_waveform=prompt_wav)
                    print("Prompt Vq Code Shape:", vq_code_prompt.shape )   

                    vq_code_prompt = vq_code_prompt[0,0,:]
                    # Convert int 12345 to token <|s_12345|>
                    speech_ids_prefix = self.ids_to_speech_tokens(vq_code_prompt)
                else:
                    speech_ids_prefix = ''
                formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

                # Tokenize the text ( and the speech prefix)
                chat = [
                    {"role": "user", "content": "Convert the text to speech:" + formatted_text},
                    {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
                ]

                input_ids = self.tokenizer.apply_chat_template(
                    chat, 
                    tokenize=True, 
                    return_tensors='pt', 
                    continue_final_message=True
                )
                input_ids = input_ids.to(self.device)
                speech_end_id = self.tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

                # Generate the speech autoregressively
                outputs = self.model.generate(
                    input_ids,
                    max_length=2048,  # We trained our model with a max length of 2048
                    eos_token_id= speech_end_id ,
                    do_sample=True,    
                    top_p=1,           #  Adjusts the diversity of generated content
                    temperature=1,   #  Controls randomness in output
                )
                # Extract the speech tokens
                generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix):-1]

                speech_tokens = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)   

                # Convert  token <|s_23456|> to int 23456 
                speech_tokens = self.extract_speech_ids(speech_tokens)

                speech_tokens = torch.tensor(speech_tokens).to(self.device).unsqueeze(0).unsqueeze(0)

                # Decode the speech tokens to speech waveform
                gen_wav = self.codec_model.decode_code(speech_tokens) 
                
                # if only need the generated part
                if speech_prompt:
                    gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
                
                gen_wav_save = gen_wav[0, 0, :].cpu().numpy()
                sf.write(save_path, gen_wav_save, 16000)
            # gen_wav_save = np.clip(gen_wav_save, -1, 1)
            # gen_wav_save = (gen_wav_save * 32767).astype(np.int16)
            return gen_wav_save


if __name__ == '__main__':
    # Llasa-8B shows better text understanding ability.

    # input_text = " He shouted, 'Everyone, please gather 'round! Here's the plan: 1) Set-up at 9:15 a.m.; 2) Lunch at 12:00 p.m. (please RSVP!); 3) Playing — e.g., games, music, etc. — from 1:15 to 4:45; and 4) Clean-up at 5 p.m.'"
    # prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
    # input_text = prompt_text + '嘻嘻,臭宝儿你真可爱,我好喜欢你呀。'
    # save_root = 'wavs/generated/'
    # save_path = save_root + 'test.wav'
    # speech_ref = 'wavs/ref/太乙真人.wav'
    # # speech_ref = None
    # # 帘外雨潺潺,春意阑珊。罗衾不耐五更寒。梦里不知身是客,一晌贪欢。独自莫凭栏,无限江山。别时容易见时难。流水落花春去也,天上人间。
    # llasa_tts = TTSapi()
    # gen = llasa_tts.forward(input_text, speech_prompt=speech_ref, save_path=save_path)
    # print(gen.shape)
    import gradio as gr
    synthesiser = TTSapi()
    TTS_LOADED = True
    def predict(config):
        global TTS_LOADED, synthesiser
        print(f"待合成文本:{config['msg']}")
        print(f"选中TTS模型:{config['tts_model']}")
        print(f"参考音频路径:{config['ref_audio']}")
        print(f"参考音频文本:{config['ref_audio_transcribe']}")
        text = config['msg']
        try:
            if len(text) == 0:
                audio_output = np.array([0], dtype=np.int16)
                print("输入为空,无法合成语音") 
            else:
                if not TTS_LOADED:
                    print('TTS模型首次加载...')
                    gr.Info("初次加载TTS模型,请稍候..", duration=63)
                    synthesiser = TTSapi(model_name=config['tts_model'])#, device="cuda:2")
                    TTS_LOADED = True
                    print('加载完毕...')
                # 检查当前模型是否是所选
                if config['tts_model'] != synthesiser.model_name:
                    print(f'当前TTS模型{synthesiser.model_name}非所选,重新加载')
                    synthesiser.reload(model_name=config['tts_model'])

                # 如果提供了参考音频,则需把参考音频的文本加在response_content前面作为前缀
                if config['ref_audio']:
                    prompt_text = config['ref_audio_transcribe']
                    if prompt_text is None:
                        # prompt_text = ...
                        raise NotImplementedError('暂时必须提供文本')  # TODO:考虑后续加入ASR模型
                    text = prompt_text + text
                    
                audio_output = synthesiser.forward(text, speech_prompt=config['ref_audio'])
            
        except Exception as e:
            print('!!!!!!!!')
            print(e)
            print('!!!!!!!!')
        
        return (synthesiser.sr if synthesiser else 16000, audio_output)

    with gr.Blocks(title="TTS Demo", theme=gr.themes.Soft(font=["sans-serif", "Arial"])) as demo:
        gr.Markdown("""
        # Personalized TTS Demo
        ## 使用步骤
        * 上传你想要合成的目标说话人的语音,10s左右即可,并在下面填入对应的文本。或直接点击下方示例
        * 输入你想要合成的文字,点击合成语音按钮,稍等片刻即可
        
        """)
        with gr.Row():
            with gr.Column():
                # TTS模型选择
                tts_model = gr.Dropdown(
                    label="选择TTS模型",
                    choices=["ChatTTS", "HKUSTAudio/LLasa-1B", "HKUSTAudio/LLasa-3B", "HKUSTAudio/LLasa-8B"],
                    value=DEFAULT_TTS_MODEL_NAME,
                    interactive=True,
                    visible=False  # 给产品演示,暂时不展示模型选择
                )
                
                # 参考音频上传
                ref_audio = gr.Audio(
                    label="上传参考音频",
                    type="filepath",
                    interactive=True
                )
                ref_audio_transcribe = gr.Textbox(label="参考音频对应文本", visible=True)
                # 创建示例数据
                examples = gr.Examples(
                    examples=DEMO_EXAMPLES,
                    inputs=[ref_audio, ref_audio_transcribe],
                    fn=predict
                )
        
            with gr.Column():
                audio_player = gr.Audio(
                    label="听听我声音~",
                    type="numpy",
                    interactive=False
                )
                msg = gr.Textbox(label="输入文本", placeholder="请输入想要合成的文本")
                submit_btn = gr.Button("合成语音", variant="primary")
                        
        current_config = gr.State({
            "msg": None,
            "tts_model": DEFAULT_TTS_MODEL_NAME,
            "ref_audio": None,
            "ref_audio_transcribe": None
        })
        gr.on(triggers=[msg.change, tts_model.change, ref_audio.change, 
                            ref_audio_transcribe.change], 
                fn=lambda text, model, audio, ref_text: {"msg": text, "tts_model": model, "ref_audio": audio, 
                                                                "ref_audio_transcribe": ref_text},
                inputs=[msg, tts_model, ref_audio, ref_audio_transcribe],
                outputs=current_config
                )
        submit_btn.click(
            predict,
            [current_config],
            [audio_player],
            queue=False
        )
    demo.launch(share=False, server_name='0.0.0.0', server_port=7863, inbrowser=True)