File size: 13,039 Bytes
49e5e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import numpy as np
import ChatTTS
import re
DEFAULT_TTS_MODEL_NAME = "HKUSTAudio/LLasa-1B"
DEMO_EXAMPLES = [
["太乙真人.wav", "对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"],
["邓紫棋.wav", "特别大的不同,因为以前在香港是过年的时候,我们可能见到的亲戚都是爸爸那边的亲戚"],
["雷军.wav", "这是个好问题,我把来龙去脉给你简单讲,就是这个社会对小米有很多的误解,有很多的误解,呃,也能理解啊,就是小米这个模式呢"],
["Taylor Swift.wav", "It's actually uh, it's a concept record, but it's my first directly autobiographical album in a while because the last album that I put out was, uh, a rework."]
]
class TTSapi:
def __init__(self,
model_name=DEFAULT_TTS_MODEL_NAME,
codec_model_name="HKUST-Audio/xcodec2",
device=torch.device("cuda:0")):
self.reload(model_name, codec_model_name, device)
def reload(self,
model_name=DEFAULT_TTS_MODEL_NAME,
codec_model_name="HKUST-Audio/xcodec2",
device=torch.device("cuda:0")):
if 'llasa' in model_name.lower():
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.model.eval().to(device)
self.codec_model = XCodec2Model.from_pretrained(codec_model_name)
self.codec_model.eval().to(device)
self.device = device
self.codec_model_name = codec_model_name
self.sr = 16000
elif 'chattts' in model_name.lower():
self.model = ChatTTS.Chat()
self.model.load(compile=False) # Set to True for better performance but would l significantly reduce the loading speed
self.sr = 24000
self.punctuation = r'[,,.。??!!~~;;]'
else:
raise ValueError(f'不支持的TTS模型:{model_name}')
self.model_name = model_name
def ids_to_speech_tokens(self, speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(self, speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
def forward(self, input_text, speech_prompt=None, save_path='wavs/generated/gen.wav'):
#TTS start!
with torch.no_grad():
if 'chattts' in self.model_name.lower():
# rand_spk = chat.sample_random_speaker()
# print(rand_spk) # save it for later timbre recovery
# params_infer_code = ChatTTS.Chat.InferCodeParams(
# spk_emb = rand_spk, # add sampled speaker
# temperature = .3, # using custom temperature
# top_P = 0.7, # top P decode
# top_K = 20, # top K decode
# )
break_num = max(min(len(re.split(self.punctuation, input_text)), 7), 2)
params_refine_text = ChatTTS.Chat.RefineTextParams(
prompt=f'[oral_2][laugh_0][break_{break_num}]',
)
wavs = self.model.infer([input_text],
params_refine_text=params_refine_text,
)
gen_wav_save = wavs[0]
sf.write(save_path, gen_wav_save, 24000)
else:
if speech_prompt:
# only 16khz speech support!
prompt_wav, sr = sf.read(speech_prompt) # you can find wav in Files
prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
# Encode the prompt wav
vq_code_prompt = self.codec_model.encode_code(input_waveform=prompt_wav)
print("Prompt Vq Code Shape:", vq_code_prompt.shape )
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = self.ids_to_speech_tokens(vq_code_prompt)
else:
speech_ids_prefix = ''
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text ( and the speech prefix)
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = self.tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to(self.device)
speech_end_id = self.tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = self.model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1, # Adjusts the diversity of generated content
temperature=1, # Controls randomness in output
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix):-1]
speech_tokens = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = self.extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).to(self.device).unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = self.codec_model.decode_code(speech_tokens)
# if only need the generated part
if speech_prompt:
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
gen_wav_save = gen_wav[0, 0, :].cpu().numpy()
sf.write(save_path, gen_wav_save, 16000)
# gen_wav_save = np.clip(gen_wav_save, -1, 1)
# gen_wav_save = (gen_wav_save * 32767).astype(np.int16)
return gen_wav_save
if __name__ == '__main__':
# Llasa-8B shows better text understanding ability.
# input_text = " He shouted, 'Everyone, please gather 'round! Here's the plan: 1) Set-up at 9:15 a.m.; 2) Lunch at 12:00 p.m. (please RSVP!); 3) Playing — e.g., games, music, etc. — from 1:15 to 4:45; and 4) Clean-up at 5 p.m.'"
# prompt_text ="对,这就是我万人敬仰的太乙真人,虽然有点婴儿肥,但也掩不住我逼人的帅气。"
# input_text = prompt_text + '嘻嘻,臭宝儿你真可爱,我好喜欢你呀。'
# save_root = 'wavs/generated/'
# save_path = save_root + 'test.wav'
# speech_ref = 'wavs/ref/太乙真人.wav'
# # speech_ref = None
# # 帘外雨潺潺,春意阑珊。罗衾不耐五更寒。梦里不知身是客,一晌贪欢。独自莫凭栏,无限江山。别时容易见时难。流水落花春去也,天上人间。
# llasa_tts = TTSapi()
# gen = llasa_tts.forward(input_text, speech_prompt=speech_ref, save_path=save_path)
# print(gen.shape)
import gradio as gr
synthesiser = TTSapi()
TTS_LOADED = True
def predict(config):
global TTS_LOADED, synthesiser
print(f"待合成文本:{config['msg']}")
print(f"选中TTS模型:{config['tts_model']}")
print(f"参考音频路径:{config['ref_audio']}")
print(f"参考音频文本:{config['ref_audio_transcribe']}")
text = config['msg']
try:
if len(text) == 0:
audio_output = np.array([0], dtype=np.int16)
print("输入为空,无法合成语音")
else:
if not TTS_LOADED:
print('TTS模型首次加载...')
gr.Info("初次加载TTS模型,请稍候..", duration=63)
synthesiser = TTSapi(model_name=config['tts_model'])#, device="cuda:2")
TTS_LOADED = True
print('加载完毕...')
# 检查当前模型是否是所选
if config['tts_model'] != synthesiser.model_name:
print(f'当前TTS模型{synthesiser.model_name}非所选,重新加载')
synthesiser.reload(model_name=config['tts_model'])
# 如果提供了参考音频,则需把参考音频的文本加在response_content前面作为前缀
if config['ref_audio']:
prompt_text = config['ref_audio_transcribe']
if prompt_text is None:
# prompt_text = ...
raise NotImplementedError('暂时必须提供文本') # TODO:考虑后续加入ASR模型
text = prompt_text + text
audio_output = synthesiser.forward(text, speech_prompt=config['ref_audio'])
except Exception as e:
print('!!!!!!!!')
print(e)
print('!!!!!!!!')
return (synthesiser.sr if synthesiser else 16000, audio_output)
with gr.Blocks(title="TTS Demo", theme=gr.themes.Soft(font=["sans-serif", "Arial"])) as demo:
gr.Markdown("""
# Personalized TTS Demo
## 使用步骤
* 上传你想要合成的目标说话人的语音,10s左右即可,并在下面填入对应的文本。或直接点击下方示例
* 输入你想要合成的文字,点击合成语音按钮,稍等片刻即可
""")
with gr.Row():
with gr.Column():
# TTS模型选择
tts_model = gr.Dropdown(
label="选择TTS模型",
choices=["ChatTTS", "HKUSTAudio/LLasa-1B", "HKUSTAudio/LLasa-3B", "HKUSTAudio/LLasa-8B"],
value=DEFAULT_TTS_MODEL_NAME,
interactive=True,
visible=False # 给产品演示,暂时不展示模型选择
)
# 参考音频上传
ref_audio = gr.Audio(
label="上传参考音频",
type="filepath",
interactive=True
)
ref_audio_transcribe = gr.Textbox(label="参考音频对应文本", visible=True)
# 创建示例数据
examples = gr.Examples(
examples=DEMO_EXAMPLES,
inputs=[ref_audio, ref_audio_transcribe],
fn=predict
)
with gr.Column():
audio_player = gr.Audio(
label="听听我声音~",
type="numpy",
interactive=False
)
msg = gr.Textbox(label="输入文本", placeholder="请输入想要合成的文本")
submit_btn = gr.Button("合成语音", variant="primary")
current_config = gr.State({
"msg": None,
"tts_model": DEFAULT_TTS_MODEL_NAME,
"ref_audio": None,
"ref_audio_transcribe": None
})
gr.on(triggers=[msg.change, tts_model.change, ref_audio.change,
ref_audio_transcribe.change],
fn=lambda text, model, audio, ref_text: {"msg": text, "tts_model": model, "ref_audio": audio,
"ref_audio_transcribe": ref_text},
inputs=[msg, tts_model, ref_audio, ref_audio_transcribe],
outputs=current_config
)
submit_btn.click(
predict,
[current_config],
[audio_player],
queue=False
)
demo.launch(share=False, server_name='0.0.0.0', server_port=7863, inbrowser=True)
|