File size: 10,297 Bytes
49e5e54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from langchain_community.document_loaders import DirectoryLoader, JSONLoader, UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, MarkdownTextSplitter, MarkdownHeaderTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from pathlib import Path
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import config as cfg
class LocalRAG:
def __init__(self,
rag_top_k=3,
doc_dir="rag/kb/BIGOLIVE及公司介绍/", # 默认加载这个,若选择角色扮演模式,可根据角色选择
vector_db_path="rag/vector_db/",
embed_model=cfg.DEFAULT_EMBEDDING_MODEL
):
self.rag_top_k = rag_top_k
self.doc_dir = doc_dir # 本地知识库的文档目录
self.vector_db_path = vector_db_path # 向量数据库存储路径
self.embed_model = embed_model
self.build_vector_db()
def build_vector_db(self):
# 加载文档(支持PDF、TXT、DOCX)
if isinstance(self.doc_dir, list):
general_docs = []
json_docs = []
md_docs = []
for doc_dir in self.doc_dir:
# 处理一般文件,txt等
loader = DirectoryLoader(doc_dir, glob="**/*.[!json!md]*") # "**/[!.]*"
tmp_docs = loader.load()
general_docs.extend(tmp_docs)
# 额外处理json文件
for json_file in Path(doc_dir).rglob("*.json"):
loader = JSONLoader(
file_path=str(json_file),
jq_schema=".[] | {spk: .spk, text: .text}",
text_content=False)
data = loader.load()
for iidx in range(len(data)):
data[iidx].page_content = bytes(data[iidx].page_content, "utf-8").decode("unicode_escape")
json_docs.extend(data)
# 额外处理md文件
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
]
for md_file in Path(doc_dir).rglob("*.md"):
with open(md_file, 'r') as f:
content = f.read()
# 定义拆分器,拆分markdown内容
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(content)
md_docs.extend(md_header_splits)
# loader = UnstructuredMarkdownLoader(md_file, mode="elements")
# data = loader.load()
# docs.extend(data)
else:
loader = DirectoryLoader(self.doc_dir, glob="**/*.*")
docs = loader.load()
# 文本分块
if len(general_docs) > 0:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
chunks = text_splitter.split_documents(docs)
else:
chunks = json_docs + md_docs
# 生成向量并构建FAISS数据库
embeddings = HuggingFaceEmbeddings(model_name=self.embed_model)
self.vector_db = FAISS.from_documents(chunks, embeddings)
self.vector_db.save_local(self.vector_db_path)
def reload_knowledge_base(self, target_doc_dir):
self.doc_dir = target_doc_dir
self.build_vector_db()
# def reset(self):
# self.vector_db = None
class LocalRAG_new:
def __init__(self,
rag_top_k=3,
doc_dir="rag/kb/BIGOLIVE及公司介绍/", # 默认加载这个,若选择角色扮演模式,可根据角色选择
vector_db_path="rag/vector_db/",
embed_model_path="princeton-nlp/sup-simcse-bert-large-uncased",
device=torch.device('cuda:2')):
self.rag_top_k = rag_top_k
self.doc_dir = doc_dir # 本地知识库的文档目录
self.kb_name = '_'.join([Path(doc_dir[i]).name for i in range(len(doc_dir))])
self.embed_model_name = Path(embed_model_path).name
self.vector_db_path = vector_db_path # 向量数据库存储路径
self.embed_model = embed_model_path
self.device = device
# 加载分词器和模型
self.tokenizer = AutoTokenizer.from_pretrained(self.embed_model)
self.embed_model = AutoModel.from_pretrained(self.embed_model).to(device)
self.vector_db = None
self._vector_db = None
self.build_vector_db()
class VectorDB:
def __init__(self, rag):
self._data = rag._vector_db
self.rag = rag
def similarity_search(self, query, k):
# 可能的输入预处理,暂无
# query = input_optimize(query)
# 计算query的embedding并与库中比较
with torch.inference_mode():
query_token = self.rag.tokenizer(query, padding=True, truncation=False, return_tensors="pt").to(self.rag.device)
query_embed = self.rag.embed_model(**query_token)['last_hidden_state'].mean(dim=1)
sim_query = F.cosine_similarity(query_embed.repeat(len(self._data['embeds']), 1), self._data['embeds'], dim=1, eps=1e-8)
max_ids_query = torch.argsort(sim_query, descending=True)[:self.rag.rag_top_k].cpu().detach().numpy()
return list(zip(np.array(self._data['chunks'])[max_ids_query], sim_query[max_ids_query]))
def build_vector_db(self):
# 加载文档(支持PDF、TXT、DOCX)
if isinstance(self.doc_dir, list):
docs = []
for doc_dir in self.doc_dir:
loader = DirectoryLoader(doc_dir, glob="**/*.[!json!md]*") # "**/[!.]*"
tmp_docs = loader.load()
docs.extend(tmp_docs)
# # 额外处理json文件
# for json_file in Path(doc_dir).rglob("*.json"):
# loader = JSONLoader(
# file_path=str(json_file),
# jq_schema='.messages[].content',
# text_content=False)
# data = loader.load()
# 额外处理md文件
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
]
for md_file in Path(doc_dir).rglob("*.md"):
with open(md_file, 'r') as f:
content = f.read()
# 定义拆分器,拆分markdown内容
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(content)
docs.extend(md_header_splits)
# loader = UnstructuredMarkdownLoader(md_file, mode="elements")
# data = loader.load()
# docs.extend(data)
else:
loader = DirectoryLoader(self.doc_dir, glob="**/*.*")
docs = loader.load()
# 文本分块
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
chunks = text_splitter.split_documents(docs)
with torch.inference_mode():
chunk_and_embed = []
for chunk in chunks:
chunk_token = self.tokenizer(chunk.page_content, padding=True, truncation=False, return_tensors="pt").to(self.device)
chunk_embed = self.embed_model(**chunk_token)['last_hidden_state'].mean(dim=1)
chunk_and_embed.append((chunk, chunk_embed))
all_chunks, all_embeds = list(zip(*chunk_and_embed))
all_chunks, all_embeds = list(all_chunks), list(all_embeds)
all_embeds = torch.cat(all_embeds, dim=0)
self._vector_db = {'chunks': all_chunks, 'embeds': all_embeds}
self.vector_db = self.VectorDB(self)
torch.save(self.vector_db, str(Path(self.vector_db_path) / f'{self.kb_name}_{self.embed_model_name}.pt'))
def reload_knowledge_base(self, target_doc_dir):
self.doc_dir = target_doc_dir
self.build_vector_db()
# def reset(self):
# self.vector_db = None
class CosPlayer:
def __init__(self, description_file):
self.update(description_file)
def update(self, description_file):
self.description_file = description_file
with open(description_file, 'r') as f:
all_lines = f.readlines()
self.core_setting = ''.join(all_lines)
self.characters_dir = Path(description_file).parent
self.prologue_file = self.description_file.replace('/characters/', '/prologues/')
if not Path(self.prologue_file).exists():
self.prologue_file = None
def get_all_characters(self):
return [str(i) for i in list(self.characters_dir.rglob('*.txt'))]
def get_core_setting(self):
return self.core_setting
def get_prologue(self):
if self.prologue_file:
with open(self.prologue_file, 'r') as f:
all_lines = f.readlines()
return ''.join(all_lines)
else:
return None
if __name__ == "__main__":
rag = LocalRAG()
# # rag.build_vector_db()
# doc_dir = "rag/debug"
# loader = DirectoryLoader(doc_dir, glob="**/*.*")
# docs = loader.load()
# # 文本分块
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=500,
# chunk_overlap=50
# )
# chunks = text_splitter.split_documents(docs)
# pass |