File size: 10,297 Bytes
49e5e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from langchain_community.document_loaders import DirectoryLoader, JSONLoader, UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, MarkdownTextSplitter, MarkdownHeaderTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from pathlib import Path
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np  
import config as cfg 



class LocalRAG:
    def __init__(self, 
                 rag_top_k=3,
                 doc_dir="rag/kb/BIGOLIVE及公司介绍/",    # 默认加载这个,若选择角色扮演模式,可根据角色选择
                 vector_db_path="rag/vector_db/", 
                 embed_model=cfg.DEFAULT_EMBEDDING_MODEL
                 ):
        self.rag_top_k = rag_top_k
        self.doc_dir = doc_dir  # 本地知识库的文档目录
        self.vector_db_path = vector_db_path  # 向量数据库存储路径
        self.embed_model = embed_model
        self.build_vector_db()
        
    def build_vector_db(self):
        # 加载文档(支持PDF、TXT、DOCX)
        if isinstance(self.doc_dir, list):
            general_docs = []
            json_docs = []
            md_docs = []
            for doc_dir in self.doc_dir:
                # 处理一般文件,txt等
                loader = DirectoryLoader(doc_dir, glob="**/*.[!json!md]*")  # "**/[!.]*"
                tmp_docs = loader.load()
                general_docs.extend(tmp_docs)
                # 额外处理json文件
                for json_file in Path(doc_dir).rglob("*.json"):
                    loader = JSONLoader(
                        file_path=str(json_file),
                        jq_schema=".[] | {spk: .spk, text: .text}",
                        text_content=False)
                    
                    data = loader.load()
                    for iidx in range(len(data)):
                        data[iidx].page_content = bytes(data[iidx].page_content, "utf-8").decode("unicode_escape")
                    json_docs.extend(data)
                
                # 额外处理md文件
                headers_to_split_on = [
                    ("#", "Header 1"),
                    ("##", "Header 2"),
                    ("###", "Header 3"),
                ]
                for md_file in Path(doc_dir).rglob("*.md"):
                    with open(md_file, 'r') as f:
                        content = f.read()
                    

                    # 定义拆分器,拆分markdown内容
                    markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
                    md_header_splits = markdown_splitter.split_text(content)
                    md_docs.extend(md_header_splits)
                    
                    # loader = UnstructuredMarkdownLoader(md_file, mode="elements")
                    # data = loader.load()
                    # docs.extend(data)
        else:
            loader = DirectoryLoader(self.doc_dir, glob="**/*.*")
            docs = loader.load()

        # 文本分块
        if len(general_docs) > 0:
            text_splitter = RecursiveCharacterTextSplitter(
                chunk_size=500,
                chunk_overlap=50
            )
            chunks = text_splitter.split_documents(docs)
        else:
            chunks = json_docs + md_docs

        # 生成向量并构建FAISS数据库
        embeddings = HuggingFaceEmbeddings(model_name=self.embed_model)
        self.vector_db = FAISS.from_documents(chunks, embeddings)
        self.vector_db.save_local(self.vector_db_path)
    
    def reload_knowledge_base(self, target_doc_dir):
        self.doc_dir = target_doc_dir
        self.build_vector_db()
    
    # def reset(self):
    #     self.vector_db = None


class LocalRAG_new:
    
    def __init__(self, 
                 rag_top_k=3,
                 doc_dir="rag/kb/BIGOLIVE及公司介绍/",    # 默认加载这个,若选择角色扮演模式,可根据角色选择
                 vector_db_path="rag/vector_db/", 
                 embed_model_path="princeton-nlp/sup-simcse-bert-large-uncased",
                 device=torch.device('cuda:2')):
        self.rag_top_k = rag_top_k
        self.doc_dir = doc_dir  # 本地知识库的文档目录
        self.kb_name = '_'.join([Path(doc_dir[i]).name for i in range(len(doc_dir))])
        self.embed_model_name = Path(embed_model_path).name
        self.vector_db_path = vector_db_path  # 向量数据库存储路径
        self.embed_model = embed_model_path
        
        self.device = device
        # 加载分词器和模型
        self.tokenizer = AutoTokenizer.from_pretrained(self.embed_model)
        self.embed_model = AutoModel.from_pretrained(self.embed_model).to(device)
        self.vector_db = None
        self._vector_db = None
        self.build_vector_db()
    
    class VectorDB:
        def __init__(self, rag):
            self._data = rag._vector_db
            self.rag = rag
            
        def similarity_search(self, query, k):
            # 可能的输入预处理,暂无
            # query = input_optimize(query)
            
            # 计算query的embedding并与库中比较
            with torch.inference_mode():
                query_token = self.rag.tokenizer(query, padding=True, truncation=False, return_tensors="pt").to(self.rag.device)
                query_embed = self.rag.embed_model(**query_token)['last_hidden_state'].mean(dim=1)
                sim_query = F.cosine_similarity(query_embed.repeat(len(self._data['embeds']), 1), self._data['embeds'], dim=1, eps=1e-8)
                max_ids_query = torch.argsort(sim_query, descending=True)[:self.rag.rag_top_k].cpu().detach().numpy()
                return list(zip(np.array(self._data['chunks'])[max_ids_query], sim_query[max_ids_query]))
        
    def build_vector_db(self):
        # 加载文档(支持PDF、TXT、DOCX)
        if isinstance(self.doc_dir, list):
            docs = []
            for doc_dir in self.doc_dir:
                loader = DirectoryLoader(doc_dir, glob="**/*.[!json!md]*")  # "**/[!.]*"
                tmp_docs = loader.load()
                docs.extend(tmp_docs)
                # # 额外处理json文件
                # for json_file in Path(doc_dir).rglob("*.json"):
                #     loader = JSONLoader(
                #         file_path=str(json_file),
                #         jq_schema='.messages[].content',
                #         text_content=False)
                    
                #     data = loader.load()
                # 额外处理md文件
                headers_to_split_on = [
                    ("#", "Header 1"),
                    ("##", "Header 2"),
                    ("###", "Header 3"),
                ]
                for md_file in Path(doc_dir).rglob("*.md"):
                    with open(md_file, 'r') as f:
                        content = f.read()
                    

                    # 定义拆分器,拆分markdown内容
                    markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
                    md_header_splits = markdown_splitter.split_text(content)
                    docs.extend(md_header_splits)
                    
                    # loader = UnstructuredMarkdownLoader(md_file, mode="elements")
                    # data = loader.load()
                    # docs.extend(data)
        else:
            loader = DirectoryLoader(self.doc_dir, glob="**/*.*")
            docs = loader.load()

        # 文本分块
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50
        )
        chunks = text_splitter.split_documents(docs)
        with torch.inference_mode():
            chunk_and_embed = []
            for chunk in chunks:
                chunk_token = self.tokenizer(chunk.page_content, padding=True, truncation=False, return_tensors="pt").to(self.device)
                chunk_embed = self.embed_model(**chunk_token)['last_hidden_state'].mean(dim=1)
                chunk_and_embed.append((chunk, chunk_embed))
            all_chunks, all_embeds = list(zip(*chunk_and_embed))
            all_chunks, all_embeds = list(all_chunks), list(all_embeds)
            all_embeds = torch.cat(all_embeds, dim=0)
            self._vector_db = {'chunks': all_chunks, 'embeds': all_embeds}
            self.vector_db = self.VectorDB(self)
            
            torch.save(self.vector_db, str(Path(self.vector_db_path) / f'{self.kb_name}_{self.embed_model_name}.pt'))
    
    def reload_knowledge_base(self, target_doc_dir):
        self.doc_dir = target_doc_dir
        self.build_vector_db()
    
    # def reset(self):
    #     self.vector_db = None


class CosPlayer:
    def __init__(self, description_file):
        self.update(description_file)
    
    def update(self, description_file):
        self.description_file = description_file
        with open(description_file, 'r') as f:
            all_lines = f.readlines()
        self.core_setting = ''.join(all_lines)
        self.characters_dir = Path(description_file).parent
        self.prologue_file = self.description_file.replace('/characters/', '/prologues/')
        if not Path(self.prologue_file).exists():
            self.prologue_file = None
             
    def get_all_characters(self):
        return [str(i) for i in list(self.characters_dir.rglob('*.txt'))]
    
    def get_core_setting(self):
        return self.core_setting
        
    def get_prologue(self):
        if self.prologue_file:
            with open(self.prologue_file, 'r') as f:
                all_lines = f.readlines()
            return ''.join(all_lines)
        else:
            return None
    
        
if __name__ == "__main__":
    rag = LocalRAG()
    # # rag.build_vector_db()
    # doc_dir = "rag/debug"
    # loader = DirectoryLoader(doc_dir, glob="**/*.*")
    # docs = loader.load()

    # # 文本分块
    # text_splitter = RecursiveCharacterTextSplitter(
    #     chunk_size=500,
    #     chunk_overlap=50
    # )
    # chunks = text_splitter.split_documents(docs)
    # pass