Spaces:
Runtime error
Runtime error
File size: 5,009 Bytes
c6c2fd0 d1ab157 c6c2fd0 8e2ced3 c6c2fd0 d1ab157 c6c2fd0 d1ab157 c6c2fd0 d1ab157 6c903be d1ab157 c6c2fd0 360a832 c6c2fd0 d1ab157 c6c2fd0 0aad17a c6c2fd0 d1ab157 dabc543 d1ab157 d6e9096 6c903be d6e9096 d1ab157 dabc543 d1ab157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
duration = 1 # limit processing of audio
class ModelHead(nn.Module):
r"""Classification head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = ModelHead(config, 1)
self.gender = ModelHead(config, 3)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# load model from hub
device = 0 if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = AgeGenderModel.from_pretrained(model_name)
def process_func(x: np.ndarray, sampling_rate: int) -> dict:
r"""Predict age and gender or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)
y = torch.hstack([y[1], y[2]])
# convert to numpy
y = y.detach().cpu().numpy()
# convert to dict
y = {
"age": 100 * y[0][0],
"female": y[0][1],
"male": y[0][2],
"child": y[0][3],
}
return y
@spaces.GPU
def recognize(file, output_selector):
if file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(file, duration=duration)
age_gender = process_func(signal, sampling_rate)
if output_selector == "age":
return f"{round(age_gender['age'])} years"
else:
return {k: v for k, v in age_gender.items() if k != "age"}
outputs = gr.Label()
title = "audEERING age and gender recognition"
description = (
"Recognize age and gender of a microphone recording or audio file. "
f"Demo uses the checkpoint [{model_name}](https://huggingface.co/{model_name})."
)
allow_flagging = "never"
# microphone = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="microphone", type="filepath"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
# file = gr.Interface(
# fn=recognize,
# inputs=gr.Audio(sources="upload", type="filepath", label="Audio file"),
# outputs=outputs,
# title=title,
# description=description,
# allow_flagging=allow_flagging,
# )
#
# # demo = gr.TabbedInterface([microphone, file], ["Microphone", "Audio file"])
# # demo.queue().launch()
# # demo.launch()
# file.launch()
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Tab(label="Input"):
with gr.Row():
with gr.Column():
audio = gr.Audio(sources="upload", type="filepath", label="Audio file")
output_selector = gr.Dropdown(
choices=["age", "gender"],
label="Output",
value="age",
)
submit_btn = gr.Button(value="Submit")
with gr.Column():
output = gr.Textbox(label="Age")
def update_output(output_selector):
"""Set different output types for different model outputs."""
if output_selector == "gender":
output = gr.Label(label="gender")
return output
output_selector.input(update_output, output_selector, output)
submit_btn.click(recognize, [audio, output_selector], [output])
demo.launch(debug=True)
|