Spaces:
Running
Running
File size: 12,410 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from dataclasses import asdict, dataclass
from typing import List
from .coqpit import Coqpit, check_argument
@dataclass
class BaseAudioConfig(Coqpit):
"""Base config to definge audio processing parameters. It is used to initialize
```TTS.utils.audio.AudioProcessor.```
Args:
fft_size (int):
Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024.
win_length (int):
Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match
```fft_size```. Defaults to 1024.
hop_length (int):
Number of audio samples between adjacent STFT columns. Defaults to 1024.
frame_shift_ms (int):
Set ```hop_length``` based on milliseconds and sampling rate.
frame_length_ms (int):
Set ```win_length``` based on milliseconds and sampling rate.
stft_pad_mode (str):
Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'.
sample_rate (int):
Audio sampling rate. Defaults to 22050.
resample (bool):
Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```.
preemphasis (float):
Preemphasis coefficient. Defaults to 0.0.
ref_level_db (int): 20
Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air.
Defaults to 20.
do_sound_norm (bool):
Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False.
log_func (str):
Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'.
do_trim_silence (bool):
Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
do_amp_to_db_mel (bool, optional):
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
trim_db (int):
Silence threshold used for silence trimming. Defaults to 45.
power (float):
Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the
artifacts in the synthesized voice. Defaults to 1.5.
griffin_lim_iters (int):
Number of Griffing Lim iterations. Defaults to 60.
num_mels (int):
Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80.
mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices.
It needs to be adjusted for a dataset. Defaults to 0.
mel_fmax (float):
Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset.
spec_gain (int):
Gain applied when converting amplitude to DB. Defaults to 20.
signal_norm (bool):
enable/disable signal normalization. Defaults to True.
min_level_db (int):
minimum db threshold for the computed melspectrograms. Defaults to -100.
symmetric_norm (bool):
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else
[0, k], Defaults to True.
max_norm (float):
```k``` defining the normalization range. Defaults to 4.0.
clip_norm (bool):
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
stats_path (str):
Path to the computed stats file. Defaults to None.
"""
# stft parameters
fft_size: int = 1024
win_length: int = 1024
hop_length: int = 256
frame_shift_ms: int = None
frame_length_ms: int = None
stft_pad_mode: str = "reflect"
# audio processing parameters
sample_rate: int = 22050
resample: bool = False
preemphasis: float = 0.0
ref_level_db: int = 20
do_sound_norm: bool = False
log_func: str = "np.log10"
# silence trimming
do_trim_silence: bool = True
trim_db: int = 45
# griffin-lim params
power: float = 1.5
griffin_lim_iters: int = 60
# mel-spec params
num_mels: int = 80
mel_fmin: float = 0.0
mel_fmax: float = None
spec_gain: int = 20
do_amp_to_db_linear: bool = True
do_amp_to_db_mel: bool = True
# normalization params
signal_norm: bool = True
min_level_db: int = -100
symmetric_norm: bool = True
max_norm: float = 4.0
clip_norm: bool = True
stats_path: str = None
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056)
check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058)
check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000)
check_argument(
"frame_length_ms",
c,
restricted=True,
min_val=10,
max_val=1000,
alternative="win_length",
)
check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length")
check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1)
check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10)
check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000)
check_argument("power", c, restricted=True, min_val=1, max_val=5)
check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000)
# normalization parameters
check_argument("signal_norm", c, restricted=True)
check_argument("symmetric_norm", c, restricted=True)
check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000)
check_argument("clip_norm", c, restricted=True)
check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000)
check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True)
check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100)
check_argument("do_trim_silence", c, restricted=True)
check_argument("trim_db", c, restricted=True)
@dataclass
class BaseDatasetConfig(Coqpit):
"""Base config for TTS datasets.
Args:
name (str):
Dataset name that defines the preprocessor in use. Defaults to None.
path (str):
Root path to the dataset files. Defaults to None.
meta_file_train (str):
Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets.
Defaults to None.
unused_speakers (List):
List of speakers IDs that are not used at the training. Default None.
meta_file_val (str):
Name of the dataset meta file that defines the instances used at validation.
meta_file_attn_mask (str):
Path to the file that lists the attention mask files used with models that require attention masks to
train the duration predictor.
"""
name: str = ""
path: str = ""
meta_file_train: str = ""
ununsed_speakers: List[str] = None
meta_file_val: str = ""
meta_file_attn_mask: str = ""
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
check_argument("name", c, restricted=True)
check_argument("path", c, restricted=True)
check_argument("meta_file_train", c, restricted=True)
check_argument("meta_file_val", c, restricted=False)
check_argument("meta_file_attn_mask", c, restricted=False)
@dataclass
class BaseTrainingConfig(Coqpit):
"""Base config to define the basic training parameters that are shared
among all the models.
Args:
model (str):
Name of the model that is used in the training.
run_name (str):
Name of the experiment. This prefixes the output folder name. Defaults to `coqui_tts`.
run_description (str):
Short description of the experiment.
epochs (int):
Number training epochs. Defaults to 10000.
batch_size (int):
Training batch size.
eval_batch_size (int):
Validation batch size.
mixed_precision (bool):
Enable / Disable mixed precision training. It reduces the VRAM use and allows larger batch sizes, however
it may also cause numerical unstability in some cases.
scheduler_after_epoch (bool):
If true, run the scheduler step after each epoch else run it after each model step.
run_eval (bool):
Enable / Disable evaluation (validation) run. Defaults to True.
test_delay_epochs (int):
Number of epochs before starting to use evaluation runs. Initially, models do not generate meaningful
results, hence waiting for a couple of epochs might save some time.
print_eval (bool):
Enable / Disable console logging for evalutaion steps. If disabled then it only shows the final values at
the end of the evaluation. Default to ```False```.
print_step (int):
Number of steps required to print the next training log.
log_dashboard (str): "tensorboard" or "wandb"
Set the experiment tracking tool
plot_step (int):
Number of steps required to log training on Tensorboard.
model_param_stats (bool):
Enable / Disable logging internal model stats for model diagnostic. It might be useful for model debugging.
Defaults to ```False```.
project_name (str):
Name of the project. Defaults to config.model
wandb_entity (str):
Name of W&B entity/team. Enables collaboration across a team or org.
log_model_step (int):
Number of steps required to log a checkpoint as W&B artifact
save_step (int):ipt
Number of steps required to save the next checkpoint.
checkpoint (bool):
Enable / Disable checkpointing.
keep_all_best (bool):
Enable / Disable keeping all the saved best models instead of overwriting the previous one. Defaults
to ```False```.
keep_after (int):
Number of steps to wait before saving all the best models. In use if ```keep_all_best == True```. Defaults
to 10000.
num_loader_workers (int):
Number of workers for training time dataloader.
num_eval_loader_workers (int):
Number of workers for evaluation time dataloader.
output_path (str):
Path for training output folder, either a local file path or other
URLs supported by both fsspec and tensorboardX, e.g. GCS (gs://) or
S3 (s3://) paths. The nonexist part of the given path is created
automatically. All training artefacts are saved there.
"""
model: str = None
run_name: str = "coqui_tts"
run_description: str = ""
# training params
epochs: int = 10000
batch_size: int = None
eval_batch_size: int = None
mixed_precision: bool = False
scheduler_after_epoch: bool = False
# eval params
run_eval: bool = True
test_delay_epochs: int = 0
print_eval: bool = False
# logging
dashboard_logger: str = "tensorboard"
print_step: int = 25
plot_step: int = 100
model_param_stats: bool = False
project_name: str = None
log_model_step: int = None
wandb_entity: str = None
# checkpointing
save_step: int = 10000
checkpoint: bool = True
keep_all_best: bool = False
keep_after: int = 10000
# dataloading
num_loader_workers: int = 0
num_eval_loader_workers: int = 0
use_noise_augment: bool = False
# paths
output_path: str = None
# distributed
distributed_backend: str = "nccl"
distributed_url: str = "tcp://localhost:54321"
|