Spaces:
Running
Running
File size: 16,413 Bytes
9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
"""
| Description: libf0 yin implementation
| Contributors: Sebastian Rosenzweig, Simon Schwär, Edgar Suárez, Meinard Müller
| License: The MIT license, https://opensource.org/licenses/MIT
| This file is part of libf0.
"""
import numpy as np
from scipy.special import beta, comb # Scipy library for binomial beta distribution
from scipy.stats import triang # Scipy library for triangular distribution
from .yin import cumulative_mean_normalized_difference_function, parabolic_interpolation
from numba import njit
# pYIN estimate computation
def pyin(x, Fs=22050, N=2048, H=256, F_min=55.0, F_max=1760.0, R=10, thresholds=np.arange(0.01, 1, 0.01),
beta_params=[1, 18], absolute_min_prob=0.01, voicing_prob=0.5):
"""
Implementation of the pYIN F0-estimation algorithm.
.. [#] Matthias Mauch and Simon Dixon.
"PYIN: A fundamental frequency estimator using probabilistic threshold distributions".
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014): 659-663.
Parameters
----------
x : ndarray
Audio signal
Fs : int
Sampling rate
N : int
Window size
H : int
Hop size
F_min : float or int
Minimal frequency
F_max : float or int
Maximal frequency
R : int
Frequency resolution given in cents
thresholds : ndarray
Range of thresholds
beta_params : tuple or list
Parameters of beta-distribution in the form [alpha, beta]
absolute_min_prob : float
Prior for voice activity
voicing_prob: float
Prior for transition probability?
Returns
-------
f0 : ndarray
Estimated F0-trajectory
t : ndarray
Time axis
conf : ndarray
Confidence
"""
if F_min > F_max:
raise Exception("F_min must be smaller than F_max!")
if F_min < Fs/N:
raise Exception(f"The condition (F_min >= Fs/N) was not met. With Fs = {Fs}, N = {N} and F_min = {F_min} you have the following options: \n1) Set F_min >= {np.ceil(Fs/N)} Hz. \n2) Set N >= {np.ceil(Fs/F_min).astype(int)}. \n3) Set Fs <= {np.floor(F_min * N)} Hz.")
x_pad = np.concatenate((np.zeros(N // 2), x, np.zeros(N // 2))) # Add zeros for centered estimates
# Compute Beta distribution
thr_idxs = np.arange(len(thresholds))
beta_distr = comb(len(thresholds), thr_idxs) * beta(thr_idxs+beta_params[0],
len(thresholds)-thr_idxs+beta_params[1]) / beta(beta_params[0],
beta_params[1])
# YIN with multiple thresholds, yielding observation matrix
B = int(np.log2(F_max / F_min) * (1200 / R))
F_axis = F_min * np.power(2, np.arange(B) * R / 1200) # for quantizing the estimated F0s
O, rms, p_orig, val_orig = yin_multi_thr(x_pad, Fs=Fs, N=N, H=H, F_min=F_min, F_max=F_max, thresholds=thresholds,
beta_distr=beta_distr, absolute_min_prob=absolute_min_prob, F_axis=F_axis,
voicing_prob=voicing_prob)
# Transition matrix, using triangular distribution used for pitch transition probabilities
max_step_cents = 50 # Pitch jump can be at most 50 cents from frame to frame
max_step = int(max_step_cents / R)
triang_distr = triang.pdf(np.arange(-max_step, max_step+1), 0.5, scale=2*max_step, loc=-max_step)
A = compute_transition_matrix(B, triang_distr)
# HMM smoothing
C = np.ones((2*B, 1)) / (2*B) # uniform initialization
f0_idxs = viterbi_log_likelihood(A, C.flatten(), O) # libfmp Viterbi implementation
# Obtain F0-trajectory
F_axis_extended = np.concatenate((F_axis, np.zeros(len(F_axis))))
f0 = F_axis_extended[f0_idxs]
# Suppress low power estimates
f0[0] = 0 # due to algorithmic reasons, we set the first value unvoiced
f0[rms < 0.01] = 0
# confidence
O_norm = O[:, np.arange(O.shape[1])]/np.max(O, axis=0)
conf = O_norm[f0_idxs, np.arange(O.shape[1])]
# Refine estimates by choosing the closest original YIN estimate
refine_estimates = True
if refine_estimates:
f0 = refine_estimates_yin(f0, p_orig, val_orig, Fs, R)
t = np.arange(O.shape[1]) * H / Fs # Time axis
return f0, t, conf
@njit
def refine_estimates_yin(f0, p_orig, val_orig, Fs, tol):
"""
Refine estimates using YIN CMNDF information.
Parameters
----------
f0 : ndarray
F0 in Hz
p_orig : ndarray
Original lag as computed by YIN
val_orig : ndarray
Original CMNDF values as computed by YIN
Fs : float
Sampling frequency
tol : float
Tolerance for refinements in cents
Returns
-------
f0_refined : ndarray
Refined F0-trajectory
"""
f0_refined = np.zeros_like(f0)
voiced_idxs = np.where(f0 > 0)[0]
f_orig = Fs / p_orig
# find closest original YIN estimate, maximally allowed absolute deviation: R (quantization error)
for m in voiced_idxs:
diff_cents = np.abs(1200 * np.log2(f_orig[:, m] / f0[m]))
candidate_idxs = np.where(diff_cents < tol)[0]
if not candidate_idxs.size:
f0_refined[m] = f0[m]
else:
f0_refined[m] = f_orig[candidate_idxs[np.argmin(val_orig[candidate_idxs, m])], m]
return f0_refined
@njit
def probabilistic_thresholding(cmndf, thresholds, p_min, p_max, absolute_min_prob, F_axis, Fs, beta_distr,
parabolic_interp=True):
"""
Probabilistic thresholding of the YIN CMNDF.
Parameters
----------
cmndf : ndarray
Cumulative Mean Normalized Difference Function
thresholds : ndarray
Array of thresholds for CMNDF
p_min : float
Period corresponding to the lower frequency bound
p_max : float
Period corresponding to the upper frequency bound
absolute_min_prob : float
Probability to chose absolute minimum
F_axis : ndarray
Frequency axis
Fs : float
Sampling rate
beta_distr : ndarray
Beta distribution that defines mapping between thresholds and probabilities
parabolic_interp : bool
Switch to activate/deactivate parabolic interpolation
Returns
-------
O_m : ndarray
Observations for given frame
lag_thr : ndarray
Computed lags for every threshold
val_thr : ndarray
CMNDF values for computed lag
"""
# restrict search range to interval [p_min:p_max]
cmndf[:p_min] = np.inf
cmndf[p_max:] = np.inf
# find local minima (assuming that cmndf is real in [p_min:p_max], you will always find a minimum,
# at least p_min or p_max)
min_idxs = (np.argwhere((cmndf[1:-1] < cmndf[0:-2]) & (cmndf[1:-1] < cmndf[2:]))).flatten().astype(np.int64) + 1
O_m = np.zeros(2 * len(F_axis))
# return if no minima are found, e.g., when frame is silence
if min_idxs.size == 0:
return O_m, np.ones_like(thresholds)*p_min, np.ones_like(thresholds)
# Optional: Parabolic Interpolation of local minima
if parabolic_interp:
# do not interpolate at the boarders, Numba compatible workaround for np.delete()
min_idxs_interp = delete_numba(min_idxs, np.argwhere(min_idxs == p_min))
min_idxs_interp = delete_numba(min_idxs_interp, np.argwhere(min_idxs_interp == p_max - 1))
p_corr, cmndf[min_idxs_interp] = parabolic_interpolation(cmndf[min_idxs_interp - 1],
cmndf[min_idxs_interp],
cmndf[min_idxs_interp + 1])
else:
p_corr = np.zeros_like(min_idxs).astype(np.float64)
# set p_corr=0 at the boarders (no correction done later)
if min_idxs[0] == p_min:
p_corr = np.concatenate((np.array([0.0]), p_corr))
if min_idxs[-1] == p_max - 1:
p_corr = np.concatenate((p_corr, np.array([0.0])))
lag_thr = np.zeros_like(thresholds)
val_thr = np.zeros_like(thresholds)
# loop over all thresholds
for i, threshold in enumerate(thresholds):
# minima below absolute threshold
min_idxs_thr = min_idxs[cmndf[min_idxs] < threshold]
# find first local minimum
if not min_idxs_thr.size:
lag = np.argmin(cmndf) # choose absolute minimum when no local minimum is found
am_prob = absolute_min_prob
val = np.min(cmndf)
else:
am_prob = 1
lag = np.min(min_idxs_thr) # choose first local minimum
val = cmndf[lag]
# correct lag
if parabolic_interp:
lag += p_corr[np.argmin(min_idxs_thr)]
# ensure that lag is in [p_min:p_max]
if lag < p_min:
lag = p_min
elif lag >= p_max:
lag = p_max - 1
lag_thr[i] = lag
val_thr[i] = val
idx = np.argmin(np.abs(1200 * np.log2(F_axis / (Fs / lag)))) # quantize estimated period
O_m[idx] += am_prob * beta_distr[i] # pYIN-Paper, Formula 4/5
return O_m, lag_thr, val_thr
@njit
def yin_multi_thr(x, Fs, N, H, F_min, F_max, thresholds, beta_distr, absolute_min_prob, F_axis, voicing_prob,
parabolic_interp=True):
"""
Applies YIN multiple times on input audio signals using different thresholds for CMNDF.
Parameters
----------
x : ndarray
Input audio signal
Fs : int
Sampling rate
N : int
Window size
H : int
Hop size
F_min : float
Lower frequency bound
F_max : float
Upper frequency bound
thresholds : ndarray
Array of thresholds
beta_distr : ndarray
Beta distribution that defines mapping between thresholds and probabilities
absolute_min_prob :float
Probability to chose absolute minimum
F_axis : ndarray
Frequency axis
voicing_prob : float
Probability of a frame being voiced
parabolic_interp : bool
Switch to activate/deactivate parabolic interpolation
Returns
-------
O : ndarray
Observations based on YIN output
rms : ndarray
Root mean square power
p_orig : ndarray
Original YIN period estimates
val_orig : ndarray
CMNDF values corresponding to original YIN period estimates
"""
M = int(np.floor((len(x) - N) / H)) + 1 # Compute number of estimates that will be generated
B = len(F_axis)
p_min = max(int(np.ceil(Fs / F_max)), 1) # period of maximal frequency in frames
p_max = int(np.ceil(Fs / F_min)) # period of minimal frequency in frames
if p_max > N:
raise Exception("The condition (Fmin >= Fs/N) was not met.")
rms = np.zeros(M) # RMS Power
O = np.zeros((2 * B, M)) # every voiced state has an unvoiced state (important for later HMM modeling)
p_orig = np.zeros((len(thresholds), M))
val_orig = np.zeros((len(thresholds), M))
for m in range(M):
# Take a frame from input signal
frame = x[m * H:m * H + N]
# Cumulative Mean Normalized Difference Function
cmndf = cumulative_mean_normalized_difference_function(frame, p_max)
# compute RMS power
rms[m] = np.sqrt(np.mean(frame ** 2))
# Probabilistic Thresholding with different thresholds
O_m, p_est_thr, val_thr = probabilistic_thresholding(cmndf, thresholds, p_min, p_max, absolute_min_prob, F_axis,
Fs, beta_distr, parabolic_interp=parabolic_interp)
O[:, m] = O_m
p_orig[:, m] = p_est_thr # store original YIN estimates for later refinement
val_orig[:, m] = val_thr # store original cmndf value of minimum corresponding to p_est
# normalization (pYIN-Paper, Formula 6)
O[0:B, :] *= voicing_prob
O[B:2 * B, :] = (1 - voicing_prob) * (1 - np.sum(O[0:B, :], axis=0)) / B
return O, rms, p_orig, val_orig
@njit
def compute_transition_matrix(M, triang_distr):
"""
Compute a transition matrix for PYIN Viterbi.
Parameters
----------
M : int
Matrix dimension
triang_distr : ndarray
(Triangular) distribution, defining tolerance for jumps deviating from the main diagonal
Returns
-------
A : ndarray
Transition matrix
"""
prob_self = 0.99
A = np.zeros((2*M, 2*M))
max_step = len(triang_distr) // 2
for i in range(M):
if i < max_step:
A[i, 0:i+max_step] = prob_self * triang_distr[max_step - i:-1] / np.sum(triang_distr[max_step - i:-1])
A[i+M, M:i+M+max_step] = prob_self * triang_distr[max_step - i:-1] / np.sum(triang_distr[max_step - i:-1])
if i >= max_step and i < M-max_step:
A[i, i-max_step:i+max_step+1] = prob_self * triang_distr
A[i+M, (i+M)-max_step:(i+M)+max_step+1] = prob_self * triang_distr
if i >= M-max_step:
A[i, i-max_step:M] = prob_self * triang_distr[0:max_step - (i-M)] / np.sum(triang_distr[0:max_step - (i-M)])
A[i+M, i+M-max_step:2*M] = prob_self * triang_distr[0:max_step - (i - M)] / \
np.sum(triang_distr[0:max_step - (i - M)])
A[i, i+M] = 1 - prob_self
A[i+M, i] = 1 - prob_self
return A
@njit
def viterbi_pyin(A, C, O):
"""Viterbi algorithm (pYIN variant)
Args:
A : ndarray
State transition probability matrix of dimension I x I
C : ndarray
Initial state distribution of dimension I X 1
O : ndarray
Likelihood matrix of dimension I x N
Returns:
idxs : ndarray
Optimal state sequence of length N
"""
B = O.shape[0] // 2
M = O.shape[1]
D = np.zeros((B * 2, M))
E = np.zeros((B * 2, M - 1))
idxs = np.zeros(M)
for i in range(B * 2):
D[i, 0] = C[i, 0] * O[i, 0] # D matrix Intial state setting
D[:, 0] = D[:, 0] / np.sum(D[:, 0]) # Normalization (using pYIN source code as a basis)
for n in range(1, M):
for i in range(B * 2):
abyd = np.multiply(A[:, i], D[:, n-1])
D[i, n] = np.max(abyd) * O[i, n]
E[i, n-1] = np.argmax(abyd)
D[:, n] = D[:, n] / np.sum(D[:, n]) # Row normalization to avoid underflow (pYIN source code sparseHMM)
idxs[M - 1] = np.argmax(D[:, M - 1])
for n in range(M - 2, 0, -1):
bkd = int(idxs[n+1]) # Intermediate variable to be compatible with Numba
idxs[n] = E[bkd, n]
return idxs.astype(np.int32)
@njit
def viterbi_log_likelihood(A, C, B_O):
"""Viterbi algorithm (log variant) for solving the uncovering problem
Notebook: C5/C5S3_Viterbi.ipynb
Args:
A : ndarray
State transition probability matrix of dimension I x I
C : ndarray
Initial state distribution of dimension I
B_O : ndarray
Likelihood matrix of dimension I x N
Returns:
S_opt : ndarray
Optimal state sequence of length N
"""
I = A.shape[0] # Number of states
N = B_O.shape[1] # Length of observation sequence
tiny = np.finfo(0.).tiny
A_log = np.log(A + tiny)
C_log = np.log(C + tiny)
B_O_log = np.log(B_O + tiny)
# Initialize D and E matrices
D_log = np.zeros((I, N))
E = np.zeros((I, N-1)).astype(np.int32)
D_log[:, 0] = C_log + B_O_log[:, 0]
# Compute D and E in a nested loop
for n in range(1, N):
for i in range(I):
temp_sum = A_log[:, i] + D_log[:, n-1]
D_log[i, n] = np.max(temp_sum) + B_O_log[i, n]
E[i, n-1] = np.argmax(temp_sum)
# Backtracking
S_opt = np.zeros(N).astype(np.int32)
S_opt[-1] = np.argmax(D_log[:, -1])
for n in range(N-2, -1, -1):
S_opt[n] = E[int(S_opt[n+1]), n]
return S_opt
@njit
def delete_numba(arr, num):
"""Delete number from array, Numba compatible. Inspired by:
https://stackoverflow.com/questions/53602663/delete-a-row-in-numpy-array-in-numba
"""
mask = np.zeros(len(arr), dtype=np.int64) == 0
mask[np.where(arr == num)[0]] = False
return arr[mask]
|