Spaces:
Running
Running
File size: 4,142 Bytes
9791162 e417f48 9791162 e417f48 9791162 e417f48 9791162 e417f48 9791162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import sys,os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
import librosa
import argparse
import numpy as np
import crepe
def move_average(a, n, mode="same"):
return (np.convolve(a, np.ones((n,))/n, mode=mode))
def compute_f0_mouth(path, device):
# pip install praat-parselmouth
import parselmouth
x, sr = librosa.load(path, sr=16000)
assert sr == 16000
lpad = 1024 // 160
rpad = lpad
f0 = parselmouth.Sound(x, sr).to_pitch_ac(
time_step=160 / sr,
voicing_threshold=0.5,
pitch_floor=30,
pitch_ceiling=1000).selected_array['frequency']
f0 = np.pad(f0, [[lpad, rpad]], mode='constant')
return f0
def compute_f0_salience(filename, device):
from pitch.core.salience import salience
audio, sr = librosa.load(filename, sr=16000)
assert sr == 16000
f0, t, s = salience(
audio,
Fs=sr,
H=320,
N=2048,
F_min=45.0,
F_max=1760.0)
f0 = np.repeat(f0, 2, -1) # 320 -> 160 * 2
f0 = move_average(f0, 3)
return f0
def compute_f0_voice(filename, device):
audio, sr = librosa.load(filename, sr=16000)
assert sr == 16000
audio = torch.tensor(np.copy(audio))[None]
audio = audio + torch.randn_like(audio) * 0.001
# Here we'll use a 10 millisecond hop length
hop_length = 160
fmin = 50
fmax = 1000
model = "full"
batch_size = 512
# pitch = crepe.predict(
# audio,
# sr,
# hop_length,
# fmin,
# fmax,
# model,
# batch_size=batch_size,
# device=device,
# return_periodicity=False,
# )
# pitch = crepe.filter.mean(pitch, 3)
# pitch = pitch.squeeze(0)
pitch, periodicity = crepe.predict(
audio,
sr,
hop_length,
fmin,
fmax,
model,
batch_size=batch_size,
device=device,
return_periodicity=True,
)
# CREPE was not trained on silent audio. some error on silent need filter.pitPath
periodicity = crepe.filter.median(periodicity, 7)
pitch = crepe.filter.mean(pitch, 5)
pitch[periodicity < 0.5] = 0
pitch = pitch.squeeze(0)
return pitch
def compute_f0_sing(filename, device):
audio, sr = librosa.load(filename, sr=16000)
assert sr == 16000
audio = torch.tensor(np.copy(audio))[None]
audio = audio + torch.randn_like(audio) * 0.001
# Here we'll use a 20 millisecond hop length
hop_length = 320
fmin = 50
fmax = 1000
model = "full"
batch_size = 512
pitch = crepe.predict(
audio,
sr,
hop_length,
fmin,
fmax,
model,
batch_size=batch_size,
device=device,
return_periodicity=False,
)
pitch = np.repeat(pitch, 2, -1) # 320 -> 160 * 2
pitch = crepe.filter.mean(pitch, 5)
pitch = pitch.squeeze(0)
return pitch
def save_csv_pitch(pitch, path):
with open(path, "w", encoding='utf-8') as pitch_file:
for i in range(len(pitch)):
t = i * 10
minute = t // 60000
seconds = (t - minute * 60000) // 1000
millisecond = t % 1000
print(
f"{minute}m {seconds}s {millisecond:3d},{int(pitch[i])}", file=pitch_file)
def load_csv_pitch(path):
pitch = []
with open(path, "r", encoding='utf-8') as pitch_file:
for line in pitch_file.readlines():
pit = line.strip().split(",")[-1]
pitch.append(int(pit))
return pitch
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True)
parser.add_argument("-p", "--pit", help="pit", dest="pit", required=True) # csv for excel
args = parser.parse_args()
print(args.wav)
print(args.pit)
device = "cuda" if torch.cuda.is_available() else "cpu"
# pitch = compute_f0_sing(args.wav, device)
pitch = compute_f0_voice(args.wav, device)
save_csv_pitch(pitch, args.pit)
# tmp = load_csv_pitch(args.pit)
# save_csv_pitch(tmp, "tmp.csv")
|