File size: 6,075 Bytes
52f4b0f
 
 
 
 
 
 
 
 
21dfff9
52f4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27cd83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27cd83
 
 
52f4b0f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import re
import faiss
import numpy as np
import pandas as pd
import gc
import os
import time
from sentence_transformers import SentenceTransformer

class DocumentRetriever:
    def __init__(self, csv_path="data/mtsamples_surgery.csv", top_k=3, similarity_threshold=0.2, batch_size=8):
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.dimension = self.model.get_sentence_embedding_dimension()
        self.index = faiss.IndexFlatIP(self.dimension)
        self.texts = []
        self.metadata = []
        self.top_k = top_k
        self.similarity_threshold = similarity_threshold
        self.batch_size = batch_size
        self._build_index(csv_path)

    def _preprocess_text(self, text):
        if not isinstance(text, str):
            return ""
        text = re.sub(r'\s+', ' ', text).strip()
        text = re.sub(r'[^\w\s.,?!:;()\[\]{}\-\'"]+', ' ', text)
        return text

    def _build_index(self, path):
        gc.collect()
        
        print(f"Loading CSV from {path}...")
        df = pd.read_csv(path)
        
        print(f"Loaded {len(df)} rows")
        
        print("Filtering and preprocessing texts...")
        df = df.dropna(subset=['transcription'])
        
        self.metadata = df[['medical_specialty', 'sample_name']].to_dict('records')
        
        self.texts = []
        for i in range(0, len(df), self.batch_size):
            batch = df['transcription'].iloc[i:i+self.batch_size].tolist()
            self.texts.extend([self._preprocess_text(text) for text in batch])
            gc.collect()
        
        print(f"Preprocessing complete. Starting encoding {len(self.texts)} documents...")
        
        for i in range(0, len(self.texts), self.batch_size):
            end_idx = min(i + self.batch_size, len(self.texts))
            batch = self.texts[i:end_idx]
            
            print(f"Encoding batch {i//self.batch_size + 1}/{(len(self.texts) + self.batch_size - 1)//self.batch_size}...")
            
            batch_embeddings = self.model.encode(batch, show_progress_bar=False)
            
            faiss.normalize_L2(batch_embeddings)
            
            self.index.add(np.array(batch_embeddings))
            
            del batch_embeddings
            gc.collect()
            
            time.sleep(0.1)
        
        print(f"Index built with {len(self.texts)} documents")

    def add_documents(self, new_texts, new_metadata=None):
        if not new_texts:
            return
            
        processed_texts = [self._preprocess_text(text) for text in new_texts]
        
        # Add to existing texts and metadata
        self.texts.extend(processed_texts)
        if new_metadata:
            self.metadata.extend(new_metadata)
        
        for i in range(0, len(processed_texts), self.batch_size):
            batch = processed_texts[i:i+min(self.batch_size, len(processed_texts)-i)]
            batch_embeddings = self.model.encode(batch, show_progress_bar=False)
            faiss.normalize_L2(batch_embeddings)
            self.index.add(np.array(batch_embeddings))

    # def query(self, question, include_metadata=True):
    #     try:
    #         q_embedding = self.model.encode([question])
    #         faiss.normalize_L2(q_embedding)
            
    #         k = min(self.top_k * 2, len(self.texts))
    #         scores, indices = self.index.search(np.array(q_embedding), k)
            
    #         results = []
    #         for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
    #             if idx != -1 and score >= self.similarity_threshold and i < self.top_k:
    #                 doc_text = self.texts[idx]
                    
    #                 if include_metadata and idx < len(self.metadata):
    #                     meta = self.metadata[idx]
    #                     doc_info = f"[Document {i+1}] (Score: {score:.2f}, Specialty: {meta.get('medical_specialty', 'Unknown')}, Sample: {meta.get('sample_name', 'Unknown')})\n\n{doc_text}"
    #                 else:
    #                     doc_info = f"[Document {i+1}] (Score: {score:.2f})\n\n{doc_text}"
                    
    #                 results.append(doc_info)
            
    #         gc.collect()
            
    #         if not results:
    #             return "No relevant documents found for this query."
            
    #         return "\n\n" + "-"*80 + "\n\n".join(results)
    #     except Exception as e:
    #         return f"Error during retrieval: {str(e)}"
    
    def query(self, question, include_metadata=True):
        try:
            q_embedding = self.model.encode([question])
            faiss.normalize_L2(q_embedding)
            
            k = min(self.top_k * 2, len(self.texts))
            scores, indices = self.index.search(np.array(q_embedding), k)
            
            results = []
            for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
                if idx != -1 and score >= self.similarity_threshold and i < self.top_k:
                    doc_text = self.texts[idx]
                    
                    if include_metadata and idx < len(self.metadata):
                        meta = self.metadata[idx]
                        # Add description to the output
                        description = meta.get('description', 'No description available')
                        doc_info = f"[Document {i+1}] (Score: {score:.2f})\nSpecialty: {meta.get('medical_specialty', 'Unknown')}\nSample: {meta.get('sample_name', 'Unknown')}\nDescription: {description}\n\n{doc_text}"
                    else:
                        doc_info = f"[Document {i+1}] (Score: {score:.2f})\n\n{doc_text}"
                    
                    results.append(doc_info)
            
            gc.collect()
            
            if not results:
                return "No relevant documents found for this query."
            
            return "\n\n" + "-"*80 + "\n\n".join(results)
        except Exception as e:
            return f"Error during retrieval: {str(e)}"