File size: 9,502 Bytes
52f4b0f
21dfff9
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
 
 
 
 
 
 
 
 
 
 
52f4b0f
21dfff9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
from typing import Dict, List, Any, Optional
from langchain_anthropic import ChatAnthropic
from langgraph.graph import StateGraph, START, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from typing import TypedDict, List, Optional, Union
import copy

from tools.retriever_tool import DocumentRetriever
from tools.search_tool import WebSearchTool
from tools.pdf_tool import PDFProcessor

class AgentState(TypedDict):
    """State schema for the agent."""
    messages: List[Union[HumanMessage, AIMessage]]
    query: str
    csv_results: Optional[str]
    web_results: Optional[str]
    pdf_results: Optional[str]
    response: Optional[str]

class MedTranscriptAgent:
    def __init__(self, anthropic_api_key: Optional[str] = None, debug: bool = False):
        self.api_key = anthropic_api_key or os.getenv("ANTHROPIC_API_KEY")
        if not self.api_key:
            raise ValueError("Anthropic API key is required")
        
        self.llm = ChatAnthropic(
            model="claude-3-7-sonnet-20250219",
            anthropic_api_key=self.api_key,
            temperature=0.1
        )
        
        self.doc_retriever = DocumentRetriever()
        self.web_search = WebSearchTool(debug=debug)
        self.pdf_processor = PDFProcessor()
        self.debug = debug
        
        self.memory_store = MemorySaver()
        
        self.conversation_threads = {}
        
        self.graph = self._build_graph()
    
    def _build_graph(self) -> StateGraph:
        """Build the LangGraph workflow for conversational QA"""
        
        workflow = StateGraph(AgentState)
        
        workflow.add_node("query_router", self._route_query)
        workflow.add_node("document_search", self._perform_doc_search)
        workflow.add_node("web_search", self._perform_web_search)
        workflow.add_node("pdf_search", self._perform_pdf_search)
        workflow.add_node("combine_results", self._generate_response)
        
        workflow.add_edge(START, "query_router")
        workflow.add_edge("query_router", "document_search")
        workflow.add_edge("query_router", "web_search")
        workflow.add_edge("query_router", "pdf_search")
        workflow.add_edge("document_search", "combine_results")
        workflow.add_edge("web_search", "combine_results")
        workflow.add_edge("pdf_search", "combine_results")
        workflow.add_edge("combine_results", END)
        
        return workflow.compile(checkpointer=self.memory_store)
    
    def _route_query(self, state: AgentState) -> Dict[str, Any]:
        """Determine which tool(s) to use for the query"""
        
        query = state["query"]
        messages = state.get("messages", [])
        
        if self.debug:
            print(f"[Router] Processing query with {len(messages)} existing messages")
        
        conversation_history = self._format_conversation_history(messages)
        
        routing_prompt = f"""
        You are a medical query router. Your job is to determine whether a query about medical topics should be:
        1. Answered using document search (for specific patient data or medical transcript information)
        2. Answered using web search (for general medical knowledge)
        3. Answered using PDF search (for detailed medical protocol or research documents)
        
        Consider the conversation history and the current query when making your decision.
        
        Conversation history:
        {conversation_history}
        
        Current query: {query}
        
        Respond with one or more of: "document", "web", "pdf"
        """
        
        route = self.llm.invoke(routing_prompt).content.strip().lower()
        
        if self.debug:
            print(f"[Router] Decision: {route}")
        
        next_steps = []
        if "document" in route:
            next_steps.append("document_search")
        if "web" in route:
            next_steps.append("web_search")
        if "pdf" in route:
            next_steps.append("pdf_search")
        
        if not next_steps:  
            next_steps = ["document_search", "web_search", "pdf_search"]
            
        return {"next": next_steps}
    
    def _perform_doc_search(self, state: AgentState) -> Dict[str, Any]:
        """Perform document search and return results"""
        query = state["query"]
        if self.debug:
            print(f"[Document Search] Searching for: {query}")
        results = self.doc_retriever.query(query)
        
        return {"csv_results": results}
    
    def _perform_web_search(self, state: AgentState) -> Dict[str, Any]:
        """Perform web search and return results"""
        query = state["query"]
        if self.debug:
            print(f"[Web Search] Searching for: {query}")
        results = self.web_search.search(query)
        
        return {"web_results": results}
    
    def _perform_pdf_search(self, state: AgentState) -> Dict[str, Any]:
        """Perform PDF search and return results"""
        query = state["query"]
        if self.debug:
            print(f"[PDF Search] Searching for: {query}")
        results = self.pdf_processor.search(query)
        
        return {"pdf_results": results}
    
    def _generate_response(self, state: AgentState) -> Dict[str, Any]:
        """Generate a response based on search results and conversation history"""
        query = state["query"]
        messages = state.get("messages", [])
        
        if self.debug:
            print(f"[Generate Response] Processing with {len(messages)} messages in history")
        
        csv_results = state.get("csv_results", "No document results available")
        web_results = state.get("web_results", "No web results available")
        pdf_results = state.get("pdf_results", "No PDF results available")
        
        conversation_history = self._format_conversation_history(messages)
        
        response_prompt = f"""
        You are a helpful medical assistant answering questions about medical transcripts and general medical knowledge.
        You have access to three types of information sources: medical transcripts (CSV), web search results, and PDF documents.
        
        Conversation history:
        {conversation_history}
        
        Current query: {query}
        
        Document search results: {csv_results}
        
        Web search results: {web_results}
        
        PDF search results: {pdf_results}
        
        Based on all available information and your medical knowledge, provide a helpful, accurate, and compassionate response to the query.
        Make sure to consider the conversation history for context and continuity.
        When citing information, clearly indicate the source (Document, Web, or PDF).
        """
        
        response = self.llm.invoke(response_prompt).content
        
        updated_messages = messages + [
            HumanMessage(content=query),
            AIMessage(content=response)
        ]
        
        if self.debug:
            print(f"[Generate Response] History now has {len(updated_messages)} messages")
        
        return {
            "response": response,
            "messages": updated_messages
        }
    
    def _format_conversation_history(self, messages: List) -> str:
        """Format conversation history for inclusion in prompts"""
        if not messages:
            return "No previous conversation"
        
        formatted = []
        for i in range(0, len(messages), 2):
            if i < len(messages):
                user_msg = messages[i].content if i < len(messages) else ""
                ai_msg = messages[i+1].content if i+1 < len(messages) else ""
                formatted.append(f"Human: {user_msg}\nAI: {ai_msg}")
        
        return "\n\n".join(formatted)
    
    def load_pdf(self, file_path: str) -> str:
        """Load a PDF document into the agent"""
        return self.pdf_processor.load_pdf(file_path)
    
    def chat(self, message: str, thread_id: str = "default") -> str:
        """Process a message in a conversation thread"""
        if thread_id in self.conversation_threads:
            messages = self.conversation_threads[thread_id]
            if self.debug:
                print(f"[Chat] Retrieved {len(messages)} messages for thread {thread_id}")
        else:
            messages = []
            if self.debug:
                print(f"[Chat] Started new conversation thread {thread_id}")
        
        state = {
            "query": message,
            "messages": copy.deepcopy(messages)  
        }
        
        if self.debug:
            print(f"[Chat] Processing query with initial state containing {len(state['messages'])} messages")
        
        try:
            result = self.graph.invoke(
                state, 
                config={"configurable": {"thread_id": thread_id}}
            )
            
            updated_messages = result.get("messages", [])
            
            self.conversation_threads[thread_id] = copy.deepcopy(updated_messages)
            
            if self.debug:
                print(f"[Chat] Updated thread {thread_id} with {len(updated_messages)} messages")
            
            return result["response"]
        except Exception as e:
            error_msg = f"Error processing message: {str(e)}"
            print(f"[ERROR] {error_msg}")
            return error_msg