Spaces:
Running
Running
File size: 1,594 Bytes
52f4b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from agent import agent_respond
def agent_interface(user_question, debug_mode=True):
return agent_respond(user_question)
custom_css = """
.gradio-container {
max-width: 1400px !important;
margin-left: auto;
margin-right: auto;
}
.output-box {
min-height: 500px !important;
font-size: 16px !important;
}
.input-box {
min-height: 150px !important;
font-size: 16px !important;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Base()) as demo:
gr.Markdown("# Healthcare Tool-Using AI Agent")
gr.Markdown("An agent that uses document retrieval, live web search, and calculation to answer clinical healthcare questions.")
with gr.Row():
with gr.Column(scale=1):
user_question = gr.Textbox(
lines=4,
placeholder="Ask a healthcare question...",
elem_classes="input-box",
label="Question"
)
debug_mode = gr.Checkbox(label="Debug Mode", value=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
output = gr.Textbox(
lines=30,
elem_classes="output-box",
label="Response"
)
submit_btn.click(
fn=agent_interface,
inputs=[user_question, debug_mode],
outputs=output
)
clear_btn.click(
fn=lambda: "",
inputs=None,
outputs=[user_question, output]
)
if __name__ == "__main__":
demo.launch() |