File size: 4,505 Bytes
52f4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import re
import faiss
import numpy as np
import pandas as pd
import gc
import os
import time
from sentence_transformers import SentenceTransformer

class Retriever:
    def __init__(self, csv_path="data/mtsamples_surgery.csv", top_k=3, similarity_threshold=0.2, batch_size=8):
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.dimension = self.model.get_sentence_embedding_dimension()
        self.index = faiss.IndexFlatIP(self.dimension)
        self.texts = []
        self.metadata = []
        self.top_k = top_k
        self.similarity_threshold = similarity_threshold
        self.batch_size = batch_size
        self._build_index(csv_path)

    def _preprocess_text(self, text):
        if not isinstance(text, str):
            return ""
        text = re.sub(r'\s+', ' ', text).strip()
        text = re.sub(r'[^\w\s.,?!:;()\[\]{}\-\'"]+', ' ', text)
        return text

    def _build_index(self, path):
        gc.collect()
        
        print(f"Loading CSV from {path}...")
        df = pd.read_csv(path)
        
        print(f"Loaded {len(df)} rows")
        
        print("Filtering and preprocessing texts...")
        df = df.dropna(subset=['transcription'])
        
        self.metadata = df[['medical_specialty', 'sample_name']].to_dict('records')
        
        self.texts = []
        for i in range(0, len(df), self.batch_size):
            batch = df['transcription'].iloc[i:i+self.batch_size].tolist()
            self.texts.extend([self._preprocess_text(text) for text in batch])
            gc.collect()
        
        print(f"Preprocessing complete. Starting encoding {len(self.texts)} documents...")
        
        for i in range(0, len(self.texts), self.batch_size):
            end_idx = min(i + self.batch_size, len(self.texts))
            batch = self.texts[i:end_idx]
            
            print(f"Encoding batch {i//self.batch_size + 1}/{(len(self.texts) + self.batch_size - 1)//self.batch_size}...")
            
            batch_embeddings = self.model.encode(batch, show_progress_bar=False)
            
            faiss.normalize_L2(batch_embeddings)
            
            self.index.add(np.array(batch_embeddings))
            
            del batch_embeddings
            gc.collect()
            
            time.sleep(0.1)
        
        print(f"Index built with {len(self.texts)} documents")

    def add_documents(self, new_texts, new_metadata=None):
        if not new_texts:
            return
            
        processed_texts = [self._preprocess_text(text) for text in new_texts]
        
        # Add to existing texts and metadata
        self.texts.extend(processed_texts)
        if new_metadata:
            self.metadata.extend(new_metadata)
        
        # Encode and add to index
        for i in range(0, len(processed_texts), self.batch_size):
            batch = processed_texts[i:i+min(self.batch_size, len(processed_texts)-i)]
            batch_embeddings = self.model.encode(batch, show_progress_bar=False)
            faiss.normalize_L2(batch_embeddings)
            self.index.add(np.array(batch_embeddings))

    def query(self, question, include_metadata=True):
        try:
            q_embedding = self.model.encode([question])
            faiss.normalize_L2(q_embedding)
            
            k = min(self.top_k * 2, len(self.texts))
            scores, indices = self.index.search(np.array(q_embedding), k)
            
            results = []
            for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
                if idx != -1 and score >= self.similarity_threshold and i < self.top_k:
                    doc_text = self.texts[idx]
                    
                    if include_metadata and idx < len(self.metadata):
                        meta = self.metadata[idx]
                        doc_info = f"[Document {i+1}] (Score: {score:.2f}, Specialty: {meta.get('medical_specialty', 'Unknown')}, Sample: {meta.get('sample_name', 'Unknown')})\n\n{doc_text}"
                    else:
                        doc_info = f"[Document {i+1}] (Score: {score:.2f})\n\n{doc_text}"
                    
                    results.append(doc_info)
            
            gc.collect()
            
            if not results:
                return "No relevant documents found for this query."
            
            return "\n\n" + "-"*80 + "\n\n".join(results)
        except Exception as e:
            return f"Error during retrieval: {str(e)}"