from pathlib import Path import numpy as np import pandas as pd import streamlit as st from mlip_arena.models import REGISTRY as MODELS valid_models = [ model for model, metadata in MODELS.items() if Path(__file__).stem in metadata.get("gpu-tasks", []) ] DATA_DIR = Path("mlip_arena/tasks/combustion") @st.cache_data def get_data(models): families = [MODELS[str(model)]["family"] for model in models] dfs = [ pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families ] df = pd.concat(dfs, ignore_index=True) df.drop_duplicates(inplace=True, subset=["formula", "method"]) return df df = get_data(valid_models) @st.cache_data def get_com_drifts(df): df_exploded = df.explode(["timestep", "energies", "com_drifts"]).reset_index(drop=True) # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame( df_exploded["com_drifts"].tolist(), index=df_exploded.index ) # Drop the original 'com_drifts' column df_flat = df_exploded.drop(columns=["com_drifts"]) df_flat["total_com_drift"] = np.sqrt( df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2 ) df_flat = df_flat.drop(columns=["com_drift_x", "com_drift_y", "com_drift_z"]) return df_flat df_exploded = get_com_drifts(df) exp_ref = -68.3078 # kcal/mol for method, row in df_exploded.groupby("method"): # # row = df[df["method"] == method].iloc[0] energies = np.array(row["energies"]) df_exploded.loc[df_exploded["method"] == method,"reaction_enthlapy_diff"] = ((energies[-1] - energies[0]) / 128 * 23.) - exp_ref df_exploded.loc[df_exploded["method"] == method, "final_com_drift"] = np.array(row["total_com_drift"])[-1] df_exploded.drop(columns=["temperatures", "pressures", "total_steps", "energies", "kinetic_energies", "timestep", "nproducts", "total_com_drift", "target_steps", "reaction", "formula", "natoms", "seconds_per_step", "seconds_per_step_per_atom", "final_step", "total_time_seconds"], axis=1, inplace=True) df_exploded.drop_duplicates(inplace=True, subset=["method"]) print(df_exploded.columns) df_exploded.set_index("method", inplace=True) df_exploded.rename(columns={ "method": "Model" }, inplace=True) table = pd.DataFrame() for index, row in df_exploded.iterrows(): new_row = { "Model": index, "Reaction enthalpy error [kcal/mol]": row["reaction_enthlapy_diff"], "Final COM drift [Å]": row["final_com_drift"], "Steps per second": row["steps_per_second"], "Yield [%]": row["yield"] * 100, } table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) table.set_index("Model", inplace=True) table.sort_values("Reaction enthalpy error [kcal/mol]", ascending=True, inplace=True) table["Rank"] = np.argsort(np.abs(table["Reaction enthalpy error [kcal/mol]"].to_numpy())) table.sort_values("Final COM drift [Å]", ascending=True, inplace=True) table["Rank"] += np.argsort(table["Final COM drift [Å]"].to_numpy()) table.sort_values("Steps per second", ascending=False, inplace=True) table["Rank"] += np.argsort(-table["Steps per second"].to_numpy()) table.sort_values("Yield [%]", ascending=False, inplace=True) table["Rank"] += np.argsort(-table["Yield [%]"].to_numpy()) table["Rank"] += 1 table.sort_values(["Rank"], ascending=True, inplace=True) table["Rank aggr."] = table["Rank"] table["Rank"] = table["Rank aggr."].rank(method='min').astype(int) table = table.reindex( columns=[ "Rank", "Rank aggr.", "Reaction enthalpy error [kcal/mol]", "Final COM drift [Å]", "Steps per second", "Yield [%]", ] ) s = ( table.style.background_gradient( cmap="Oranges", subset=["Reaction enthalpy error [kcal/mol]"], ) .background_gradient( cmap="Oranges", subset=["Final COM drift [Å]"], gmap=np.log10(table["Final COM drift [Å]"].to_numpy() + 1e-10), ) .background_gradient( cmap="Oranges_r", subset=["Steps per second", "Yield [%]"] ) .background_gradient( cmap="Blues", subset=["Rank", "Rank aggr."], ) .format( "{:.3e}", subset=["Final COM drift [Å]"], ) ) def render(): st.dataframe( s, use_container_width=True, )