File size: 6,238 Bytes
b7d94da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from pathlib import Path

import numpy as np
import pandas as pd
from ase.data import chemical_symbols
from ase.io import read
from scipy import stats
from scipy.interpolate import UnivariateSpline
from tqdm.auto import tqdm

from mlip_arena.models import REGISTRY, MLIPEnum

for model in MLIPEnum:

    df = pd.DataFrame(
        columns=[
            "name",
            "method",
            "R",
            "E",
            "F",
            "S^2",
            "force-flip-times",
            "force-total-variation",
            "force-jump",
            "energy-diff-flip-times",
            "energy-grad-norm-max",
            "energy-jump",
            "energy-total-variation",
            "tortuosity",
            "conservation-deviation",
            "spearman-descending-force",
            "spearman-ascending-force",
            "spearman-repulsion-energy",
            "spearman-attraction-energy",
            "pbe-energy-mae",
            "pbe-force-mae",
        ]
    )

    for symbol in tqdm(chemical_symbols[1:]):
        da = symbol + symbol

        out_dir = Path(model.name)

        traj_fpath = out_dir / f"{str(da)}.extxyz"

        if traj_fpath.exists():
            traj = read(traj_fpath, index=":")
        else:
            continue

        Rs, Es, Fs, S2s = [], [], [], []
        for atoms in traj:
            vec = atoms.positions[1] - atoms.positions[0]
            r = np.linalg.norm(vec)
            e = atoms.get_potential_energy()
            f = np.inner(vec / r, atoms.get_forces()[1])
            # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))

            Rs.append(r)
            Es.append(e)
            Fs.append(f)
            # S2s.append(s2)

        rs = np.array(Rs)
        es = np.array(Es)
        fs = np.array(Fs)

        # sort interatomic distances and align to zero at far field
        indices = np.argsort(rs)[::-1]
        rs = rs[indices]
        es = es[indices]
        eshift = es[0]
        es -= eshift
        fs = fs[indices]

        iminf = np.argmin(fs)
        imine = np.argmin(es)

        de_dr = np.gradient(es, rs)
        d2e_dr2 = np.gradient(de_dr, rs)

        # avoid numerical sensitity close to zero
        rounded_fs = np.copy(fs)
        rounded_fs[np.abs(rounded_fs) < 1e-2] = 0  # 10meV/A
        fs_sign = np.sign(rounded_fs)
        mask = fs_sign != 0
        rounded_fs = rounded_fs[mask]
        fs_sign = fs_sign[mask]
        f_flip = np.diff(fs_sign) != 0

        fdiff = np.diff(fs)
        fdiff_sign = np.sign(fdiff)
        mask = fdiff_sign != 0
        fdiff = fdiff[mask]
        fdiff_sign = fdiff_sign[mask]
        fdiff_flip = np.diff(fdiff_sign) != 0
        fjump = (
            np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum()
        )

        ediff = np.diff(es)
        ediff[np.abs(ediff) < 1e-3] = 0  # 1meV
        ediff_sign = np.sign(ediff)
        mask = ediff_sign != 0
        ediff = ediff[mask]
        ediff_sign = ediff_sign[mask]
        ediff_flip = np.diff(ediff_sign) != 0
        ejump = (
            np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()
        )

        try:
            pbe_traj = read(f"./vasp/{da}/PBE.extxyz", index=":")

            pbe_rs, pbe_es, pbe_fs = [], [], []

            for atoms in pbe_traj:
                vec = atoms.positions[1] - atoms.positions[0]
                r = np.linalg.norm(vec)
                pbe_rs.append(r)
                pbe_es.append(atoms.get_potential_energy())
                pbe_fs.append(np.inner(vec / r, atoms.get_forces()[1]))

            pbe_rs = np.array(pbe_rs)
            pbe_es = np.array(pbe_es)
            pbe_fs = np.array(pbe_fs)

            indices = np.argsort(pbe_rs)
            pbe_rs = pbe_rs[indices]
            pbe_es = pbe_es[indices]
            pbe_fs = pbe_fs[indices]

            pbe_es -= pbe_es[-1]

            xs = np.linspace(pbe_rs.min(), pbe_rs.max(), int(1e3))

            cs = UnivariateSpline(pbe_rs, pbe_es, s=0)
            pbe_energy_mae = np.mean(np.abs(es - cs(rs)))

            cs = UnivariateSpline(pbe_rs, pbe_fs, s=0)
            pbe_force_mae = np.mean(np.abs(fs - cs(rs)))
        except Exception as e:
            print(e)
            pbe_energy_mae = None
            pbe_force_mae = None

        conservation_deviation = np.mean(np.abs(fs + de_dr))

        etv = np.sum(np.abs(np.diff(es)))

        data = {
            "name": da,
            "method": model.name,
            "R": rs,
            "E": es + eshift,
            "F": fs,
            "S^2": S2s,
            "force-flip-times": np.sum(f_flip),
            "force-total-variation": np.sum(np.abs(np.diff(fs))),
            "force-jump": fjump,
            "energy-diff-flip-times": np.sum(ediff_flip),
            "energy-grad-norm-max": np.max(np.abs(de_dr)),
            "energy-jump": ejump,
            # "energy-grad-norm-mean": np.mean(de_dr_abs),
            "energy-total-variation": etv,
            "tortuosity": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),
            "conservation-deviation": conservation_deviation,
            "spearman-descending-force": stats.spearmanr(
                rs[iminf:], fs[iminf:]
            ).statistic,
            "spearman-ascending-force": stats.spearmanr(
                rs[:iminf], fs[:iminf]
            ).statistic,
            "spearman-repulsion-energy": stats.spearmanr(
                rs[imine:], es[imine:]
            ).statistic,
            "spearman-attraction-energy": stats.spearmanr(
                rs[:imine], es[:imine]
            ).statistic,
            "pbe-energy-mae": pbe_energy_mae,
            "pbe-force-mae": pbe_force_mae,
        }

        df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)

    json_fpath = Path(REGISTRY[model.name]["family"]) / "homonuclear-diatomics.json"

    if json_fpath.exists():
        df0 = pd.read_json(json_fpath)
        df = pd.concat([df0, df], ignore_index=True)
        df.drop_duplicates(inplace=True, subset=["name", "method"], keep="last")

    df.to_json(json_fpath, orient="records")

    json_fpath = Path(model.name) / "homonuclear-diatomics.json"
    df.to_json(json_fpath, orient="records")