File size: 5,571 Bytes
1485b15
 
a133fcb
 
d98d701
072f65e
 
 
fa55745
1547ed2
fa55745
d97b3b5
 
d98d701
1547ed2
d97b3b5
df95987
d97b3b5
 
 
 
 
 
 
 
c7442c5
 
 
 
 
 
 
 
1485b15
c162771
d98d701
a133fcb
 
 
 
c7442c5
 
 
a133fcb
b7d94da
c7442c5
a133fcb
 
 
e517f23
c7442c5
d98d701
 
 
 
 
5d9e01e
 
c7442c5
 
 
5d9e01e
242e83d
072f65e
 
 
 
 
d97b3b5
 
072f65e
 
d97b3b5
 
 
 
072f65e
d97b3b5
072f65e
d97b3b5
072f65e
 
 
 
 
 
 
 
 
 
 
 
242e83d
5d9e01e
242e83d
e517f23
5d9e01e
242e83d
 
 
d98d701
 
c7442c5
 
 
242e83d
 
 
 
5d9e01e
d98d701
5d9e01e
e517f23
 
 
5d9e01e
242e83d
dad15cc
d97b3b5
c7442c5
 
 
242e83d
 
 
 
 
1547ed2
c7442c5
 
 
 
 
 
 
 
 
d98d701
e517f23
 
 
 
d98d701
1547ed2
 
 
c7442c5
 
 
 
 
1547ed2
 
 
d98d701
1547ed2
d98d701
 
 
1547ed2
c7442c5
 
 
 
 
 
 
d98d701
c7442c5
1547ed2
c7442c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from __future__ import annotations

import importlib
from enum import Enum
from pathlib import Path
from typing import Dict, Optional, Type, TypeVar, Union

T = TypeVar("T", bound="MLIP")

import torch
import yaml
from ase import Atoms
from ase.calculators.calculator import Calculator, all_changes
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
from typing_extensions import Self

try:
    from mlip_arena.data.collate import collate_fn
except ImportError:
    # Fallback to a dummy function if the import fails
    def collate_fn(batch: list[Atoms], cutoff: float) -> None:
        raise ImportError(
            "collate_fn import failed. Please install the required dependencies."
        )

try:
    from prefect.logging import get_run_logger

    logger = get_run_logger()
except (ImportError, RuntimeError):
    from loguru import logger

with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
    REGISTRY = yaml.safe_load(f)

MLIPMap = {}

for model, metadata in REGISTRY.items():
    try:
        module = importlib.import_module(
            f"{__package__}.{metadata['module']}.{metadata['family']}"
        )
        MLIPMap[model] = getattr(module, metadata["class"])
    except (ModuleNotFoundError, AttributeError, ValueError, ImportError) as e:
        logger.warning(e)
        continue

MLIPEnum = Enum("MLIPEnum", MLIPMap)


class MLIP(
    nn.Module,
    PyTorchModelHubMixin,
    tags=["atomistic-simulation", "MLIP"],
):
    def __init__(self, model: nn.Module) -> None:
        super().__init__()
        # https://github.com/pytorch/pytorch/blob/3cbc8c54fd37eb590e2a9206aecf3ab568b3e63c/torch/_dynamo/config.py#L534
        # torch._dynamo.config.compiled_autograd = True
        # self.model = torch.compile(model)
        self.model = model

    def _save_pretrained(self, save_directory: Path) -> None:
        return super()._save_pretrained(save_directory)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: str | Path,
        *,
        force_download: bool = False,
        resume_download: bool | None = None,
        proxies: dict | None = None,
        token: str | bool | None = None,
        cache_dir: str | Path | None = None,
        local_files_only: bool = False,
        revision: str | None = None,
        **model_kwargs,
    ) -> Self:
        return super().from_pretrained(
            pretrained_model_name_or_path,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            token=token,
            cache_dir=cache_dir,
            local_files_only=local_files_only,
            revision=revision,
            **model_kwargs,
        )

    def forward(self, x):
        return self.model(x)


class MLIPCalculator(MLIP, Calculator):
    name: str
    implemented_properties: list[str] = ["energy", "forces", "stress"]

    def __init__(
        self,
        model: nn.Module,
        device: torch.device | None = None,
        cutoff: float = 6.0,
        # ASE Calculator
        restart=None,
        atoms=None,
        directory=".",
        calculator_kwargs: dict = {},
    ):
        MLIP.__init__(self, model=model)  # Initialize MLIP part
        Calculator.__init__(
            self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs
        )  # Initialize ASE Calculator part
        # Additional initialization if needed
        # self.name: str = self.__class__.__name__
        from mlip_arena.models.utils import get_freer_device

        self.device = device or get_freer_device()
        self.cutoff = cutoff
        self.model.to(self.device)
        # self.device = device or torch.device(
        #     "cuda" if torch.cuda.is_available() else "cpu"
        # )
        # self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device)
        # self.implemented_properties = ["energy", "forces", "stress"]

    # def __getstate__(self):
    #     state = self.__dict__.copy()
    #     state["_modules"]["model"] = state["_modules"]["model"]._orig_mod
    #     return state

    # def __setstate__(self, state):
    #     self.__dict__.update(state)
    #     self.model = torch.compile(state["_modules"]["model"])

    def calculate(
        self,
        atoms: Atoms,
        properties: list[str],
        system_changes: list = all_changes,
    ):
        """Calculate energies and forces for the given Atoms object"""
        super().calculate(atoms, properties, system_changes)

        # TODO: move collate_fn to here in MLIPCalculator
        data = collate_fn([atoms], cutoff=self.cutoff).to(self.device)
        output = self.forward(data)

        # TODO: decollate_fn

        self.results = {}
        if "energy" in properties:
            self.results["energy"] = output["energy"].squeeze().item()
        if "forces" in properties:
            self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy()
        if "stress" in properties:
            self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy()

    # def forward(self, x: Atoms) -> dict[str, torch.Tensor]:
    #     """Implement data conversion, graph creation, and model forward pass

    #     Example implementation:
    #     1. Use `ase.neighborlist.NeighborList` to get neighbor list
    #     2. Create `torch_geometric.data.Data` object and copy the data
    #     3. Pass the `Data` object to the model and return the output

    #     """

    #     raise NotImplementedError