Spaces:
Running
Running
File size: 2,888 Bytes
3b0d98a df95987 5fe6cc0 5f78296 3b0d98a 3c32d85 5fe6cc0 3b0d98a 1485b15 5f78296 df95987 55346d5 1485b15 5f78296 2100e49 fcaf71c 5fe6cc0 3b0d98a 5fe6cc0 2100e49 5fe6cc0 3b0d98a 2100e49 55346d5 1485b15 5f78296 fcaf71c 3b0d98a df95987 55346d5 3b0d98a 558b4d7 1485b15 140be5e 558b4d7 cc648f8 3c32d85 cc648f8 140be5e 5fe6cc0 5f78296 df95987 5f78296 55346d5 5f78296 55346d5 5f78296 5fe6cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
from pathlib import Path
import pandas as pd
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
from mlip_arena.tasks import REGISTRY as TASKS
DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json") for model in MODELS]
df = pd.concat(dfs, ignore_index=True)
table = pd.DataFrame(columns=[
"Model",
"Element Coverage",
# "No. of reversed forces",
# "Energy-consistent forces",
"Prediction",
"NVT",
"NPT",
"Code",
"Paper",
"First Release",
])
for model in MODELS:
rows = df[df["method"] == model]
metadata = MODELS.get(model, {})
new_row = {
"Model": model,
"Element Coverage": len(rows["name"].unique()),
# "No. of reversed forces": None, # Replace with actual logic if available
# "Energy-consistent forces": None, # Replace with actual logic if available
"Prediction": metadata.get("prediction", None),
"NVT": "✅" if metadata.get("nvt", False) else "❌",
"NPT": "✅" if metadata.get("npt", False) else "❌",
"Code": metadata.get("github", None) if metadata else None,
"Paper": metadata.get("doi", None) if metadata else None,
"First Release": metadata.get("date", None),
}
table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
table.set_index("Model", inplace=True)
s = table.style.background_gradient(
cmap="PuRd",
subset=["Element Coverage"],
vmin=0, vmax=120
)
st.warning("MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.", icon="⚠️")
st.info("Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", icon="🤗")
st.markdown(
"""
<h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs), mainly for disclosing the learned physics and chemistry of the models and their performance on molecular dynamics (MD) simulations.
The benchmarks are designed to evaluate the readiness and reliability of open-source, open-weight models to reproduce the qualitatively or quantitatively correct physics.
""", unsafe_allow_html=True)
st.dataframe(
s,
use_container_width=True,
column_config={
"Code": st.column_config.LinkColumn(
# validate="^https://[a-z]+\.streamlit\.app$",
width="medium",
display_text="Link",
),
"Paper": st.column_config.LinkColumn(
# validate="^https://[a-z]+\.streamlit\.app$",
width="medium",
display_text="Link",
),
},
)
for task in TASKS:
st.header(task, divider=True)
# st.write("Results for the task are not available yet.") |