BounharAbdelaziz commited on
Commit
3c739a1
·
verified ·
1 Parent(s): a70b57c

added @spaces.GPU

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -1,6 +1,12 @@
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import os
 
 
 
 
 
 
4
 
5
  # token
6
  token = os.environ['TOKEN']
@@ -9,7 +15,7 @@ token = os.environ['TOKEN']
9
  MODEL_NAME = "atlasia/Al-Atlas-LLM"
10
 
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
12
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to('cuda')
13
 
14
  # Predefined examples
15
  examples = [
@@ -23,6 +29,7 @@ examples = [
23
  , 256, 0.7, 0.9, 150, 8, 1.5],
24
  ]
25
 
 
26
  def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
27
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
28
  output = model.generate(
 
1
  import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import os
4
+ import spaces
5
+ import torch
6
+
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+ print(f'[INFO] Using device: {device}')
10
 
11
  # token
12
  token = os.environ['TOKEN']
 
15
  MODEL_NAME = "atlasia/Al-Atlas-LLM"
16
 
17
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
18
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to(device)
19
 
20
  # Predefined examples
21
  examples = [
 
29
  , 256, 0.7, 0.9, 150, 8, 1.5],
30
  ]
31
 
32
+ @spaces.GPU
33
  def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
34
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
35
  output = model.generate(