Spaces:
Running
on
Zero
Running
on
Zero
added @spaces.GPU
Browse files
app.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# token
|
6 |
token = os.environ['TOKEN']
|
@@ -9,7 +15,7 @@ token = os.environ['TOKEN']
|
|
9 |
MODEL_NAME = "atlasia/Al-Atlas-LLM"
|
10 |
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to(
|
13 |
|
14 |
# Predefined examples
|
15 |
examples = [
|
@@ -23,6 +29,7 @@ examples = [
|
|
23 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
24 |
]
|
25 |
|
|
|
26 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
27 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
28 |
output = model.generate(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import os
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
print(f'[INFO] Using device: {device}')
|
10 |
|
11 |
# token
|
12 |
token = os.environ['TOKEN']
|
|
|
15 |
MODEL_NAME = "atlasia/Al-Atlas-LLM"
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=token)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=token).to(device)
|
19 |
|
20 |
# Predefined examples
|
21 |
examples = [
|
|
|
29 |
, 256, 0.7, 0.9, 150, 8, 1.5],
|
30 |
]
|
31 |
|
32 |
+
@spaces.GPU
|
33 |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5):
|
34 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
35 |
output = model.generate(
|