Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the pretrained model and tokenizer
|
5 |
+
MODEL_NAME = "atlasia/Al-Atlas-LLM"
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto")
|
9 |
+
|
10 |
+
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, repetition_penalty=1.5):
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
12 |
+
output = model.generate(
|
13 |
+
**inputs,
|
14 |
+
max_length=max_length,
|
15 |
+
temperature=temperature,
|
16 |
+
top_p=top_p,
|
17 |
+
do_sample=True,
|
18 |
+
repetition_penalty=repetition_penalty,
|
19 |
+
num_beams=8,
|
20 |
+
top_p= top_p,
|
21 |
+
top_k= top_k,
|
22 |
+
early_stopping = True,
|
23 |
+
)
|
24 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Create the Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=generate_text,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(label="Prompt: دخل النص بالدارجة"),
|
31 |
+
gr.Slider(50, 500, value=256, label="Max Length"),
|
32 |
+
gr.Slider(0.1, 1.5, value=0.7, label="Temperature"),
|
33 |
+
gr.Slider(0.1, 1.0, value=0.9, label="Top-p"),
|
34 |
+
gr.Slider(1, 10000, value=150, label="Top-k"),
|
35 |
+
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"),
|
36 |
+
],
|
37 |
+
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"),
|
38 |
+
title="Moroccan Darija LLM",
|
39 |
+
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija."
|
40 |
+
)
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
iface.launch()
|