from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath learner = load_learner('cat.pkl') categories = ['Dog', 'Cat'] def classify_image(img): pred,idx,probs = learner.predict(img) return dict(zip(categories, map(float, probs))) image = gr.Image(height=192, width=192) labels = gr.Label() examples = ['dog.jpg', 'cat.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=labels, examples=examples) intf.launch(inline=False)