Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Stable Diffusion Hugging Face App (Gradio UI + Style Selection + Custom Loss Placeholder)
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
+
|
8 |
+
# Load pre-trained models
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
11 |
+
"runwayml/stable-diffusion-v1-5",
|
12 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
13 |
+
).to(device)
|
14 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
15 |
+
|
16 |
+
# Example styles from textual inversion (simulated via prompts)
|
17 |
+
STYLE_MAP = {
|
18 |
+
"Van Gogh": "in the style of Van Gogh",
|
19 |
+
"Cyberpunk": "cyberpunk futuristic cityscape",
|
20 |
+
"Pixel Art": "8-bit pixel art style",
|
21 |
+
"Studio Ghibli": "studio ghibli anime style",
|
22 |
+
"Surrealism": "in surrealistic dreamscape style"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Custom loss placeholder (not applied at inference, for academic purposes)
|
26 |
+
def custom_loss_placeholder(image_tensor):
|
27 |
+
# Example: "yellow_loss" = penalize lack of yellow pixels
|
28 |
+
yellow = torch.tensor([1.0, 1.0, 0.0]).to(image_tensor.device)
|
29 |
+
image_mean = image_tensor.mean(dim=[1, 2]) # Average over H and W
|
30 |
+
yellow_loss = torch.nn.functional.mse_loss(image_mean, yellow)
|
31 |
+
return yellow_loss
|
32 |
+
|
33 |
+
# Generate image based on prompt and style
|
34 |
+
def generate(prompt, style, seed):
|
35 |
+
torch.manual_seed(seed)
|
36 |
+
full_prompt = f"{prompt}, {STYLE_MAP.get(style, '')}"
|
37 |
+
result = pipe(full_prompt, guidance_scale=7.5).images[0]
|
38 |
+
return result
|
39 |
+
|
40 |
+
# Gradio UI
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("""# Stable Diffusion Style Generator\nGenerate styled images using Stable Diffusion + Textual Inversion Styles.""")
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
prompt = gr.Textbox(label="Enter Prompt", placeholder="A cat riding a bicycle through space")
|
46 |
+
style = gr.Dropdown(choices=list(STYLE_MAP.keys()), label="Choose Style", value="Van Gogh")
|
47 |
+
seed = gr.Slider(minimum=0, maximum=9999, step=1, value=42, label="Random Seed")
|
48 |
+
|
49 |
+
btn = gr.Button("Generate Image")
|
50 |
+
output = gr.Image(label="Stylized Output")
|
51 |
+
|
52 |
+
btn.click(fn=generate, inputs=[prompt, style, seed], outputs=output)
|
53 |
+
|
54 |
+
# Launch app
|
55 |
+
demo.launch()
|