Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,10 +12,9 @@ def upgrade_packages():
|
|
12 |
except Exception as e:
|
13 |
print("Error upgrading packages:", e)
|
14 |
|
15 |
-
#
|
16 |
-
upgrade_packages()
|
17 |
|
18 |
-
# Now import the libraries
|
19 |
import torch
|
20 |
from transformers import CLIPProcessor, CLIPModel, WhisperProcessor, WhisperForConditionalGeneration, AutoTokenizer, AutoModelForCausalLM
|
21 |
import gradio as gr
|
@@ -41,6 +40,7 @@ text_model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
41 |
# Define Projection Layers
|
42 |
# ------------------------------
|
43 |
print("Initializing image projection layer...")
|
|
|
44 |
image_projection = torch.nn.Linear(512, 768)
|
45 |
|
46 |
# ------------------------------
|
@@ -49,10 +49,11 @@ image_projection = torch.nn.Linear(512, 768)
|
|
49 |
|
50 |
def multimodal_inference(text_input, image_input, audio_input):
|
51 |
"""
|
52 |
-
Processes text, image, and audio inputs
|
53 |
- Text is added directly.
|
54 |
-
- The image is processed via CLIP
|
55 |
-
- Audio is transcribed
|
|
|
56 |
The final prompt is sent to the text model for generation.
|
57 |
"""
|
58 |
prompt = ""
|
@@ -67,11 +68,10 @@ def multimodal_inference(text_input, image_input, audio_input):
|
|
67 |
clip_inputs = clip_processor(images=image_input, return_tensors="pt")
|
68 |
with torch.no_grad():
|
69 |
image_features = clip_model.get_image_features(**clip_inputs)
|
70 |
-
# Normalize image features
|
71 |
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
|
72 |
-
# Project image embedding into GPT-2's embedding space
|
73 |
projected_image = image_projection(image_features)
|
74 |
-
#
|
75 |
prompt += " [IMAGE_EMBEDDING]"
|
76 |
except Exception as e:
|
77 |
print("Error processing image:", e)
|
@@ -111,9 +111,9 @@ def multimodal_inference(text_input, image_input, audio_input):
|
|
111 |
iface = gr.Interface(
|
112 |
fn=multimodal_inference,
|
113 |
inputs=[
|
114 |
-
gr.
|
115 |
-
gr.
|
116 |
-
gr.
|
117 |
],
|
118 |
outputs="text",
|
119 |
title="Multi-Modal LLM Demo",
|
|
|
12 |
except Exception as e:
|
13 |
print("Error upgrading packages:", e)
|
14 |
|
15 |
+
# Uncomment the next line for local debugging.
|
16 |
+
# upgrade_packages()
|
17 |
|
|
|
18 |
import torch
|
19 |
from transformers import CLIPProcessor, CLIPModel, WhisperProcessor, WhisperForConditionalGeneration, AutoTokenizer, AutoModelForCausalLM
|
20 |
import gradio as gr
|
|
|
40 |
# Define Projection Layers
|
41 |
# ------------------------------
|
42 |
print("Initializing image projection layer...")
|
43 |
+
# Project CLIP's 512-dim image embeddings to GPT-2's 768-dim embeddings.
|
44 |
image_projection = torch.nn.Linear(512, 768)
|
45 |
|
46 |
# ------------------------------
|
|
|
49 |
|
50 |
def multimodal_inference(text_input, image_input, audio_input):
|
51 |
"""
|
52 |
+
Processes text, image, and audio inputs:
|
53 |
- Text is added directly.
|
54 |
+
- The image is processed via CLIP and projected (here, we append a placeholder).
|
55 |
+
- Audio is transcribed via Whisper.
|
56 |
+
|
57 |
The final prompt is sent to the text model for generation.
|
58 |
"""
|
59 |
prompt = ""
|
|
|
68 |
clip_inputs = clip_processor(images=image_input, return_tensors="pt")
|
69 |
with torch.no_grad():
|
70 |
image_features = clip_model.get_image_features(**clip_inputs)
|
71 |
+
# Normalize and project image features
|
72 |
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
|
|
|
73 |
projected_image = image_projection(image_features)
|
74 |
+
# Append a placeholder tag (in a full system, you would fuse these embeddings)
|
75 |
prompt += " [IMAGE_EMBEDDING]"
|
76 |
except Exception as e:
|
77 |
print("Error processing image:", e)
|
|
|
111 |
iface = gr.Interface(
|
112 |
fn=multimodal_inference,
|
113 |
inputs=[
|
114 |
+
gr.Textbox(lines=5, placeholder="Enter your text here...", label="Text Input"),
|
115 |
+
gr.Image(type="pil", label="Image Input (Optional)"),
|
116 |
+
gr.Audio(source="upload", type="filepath", label="Audio Input (Optional)")
|
117 |
],
|
118 |
outputs="text",
|
119 |
title="Multi-Modal LLM Demo",
|