atharvasc27112001's picture
Create app.py
d6298eb verified
raw
history blame
4.57 kB
import torch
from transformers import CLIPProcessor, CLIPModel, WhisperProcessor, WhisperForConditionalGeneration, AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import soundfile as sf
# ------------------------------
# Load Pretrained Models & Processors
# ------------------------------
print("Loading CLIP model...")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("Loading Whisper model...")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
print("Loading GPT-2 model (placeholder for your text model)...")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
text_model = AutoModelForCausalLM.from_pretrained("gpt2")
# ------------------------------
# Define Projection Layers
# ------------------------------
# Here we create a simple linear layer to project CLIP's image embeddings (512 dims)
# to GPT-2's embedding dimension (768 dims). In a full project, this layer would be fine-tuned.
print("Initializing image projection layer...")
image_projection = torch.nn.Linear(512, 768)
# ------------------------------
# Multi-Modal Inference Function
# ------------------------------
def multimodal_inference(text_input, image_input, audio_input):
"""
Processes three modalities:
- Text: used directly.
- Image: processed via CLIP and projected.
- Audio: transcribed using Whisper.
The function fuses the outputs by concatenating their textual representations,
and then feeds the final prompt to the text model for generation.
"""
prompt = ""
# Process text input
if text_input:
prompt += text_input.strip()
# Process image input if provided
if image_input is not None:
try:
clip_inputs = clip_processor(images=image_input, return_tensors="pt")
with torch.no_grad():
image_features = clip_model.get_image_features(**clip_inputs)
# Normalize image features
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
# Project image embedding into GPT-2's embedding space
projected_image = image_projection(image_features)
# For demo purposes, we simply append a placeholder tag.
# In a full system, you would integrate these embeddings into your model.
prompt += " [IMAGE_EMBEDDING]"
except Exception as e:
print("Error processing image:", e)
prompt += " [IMAGE_ERROR]"
# Process audio input if provided
if audio_input is not None:
try:
# Gradio provides a filepath for the audio file.
audio, sr = sf.read(audio_input)
except Exception as e:
print("Error reading audio file:", e)
return "Error processing audio input."
try:
whisper_inputs = whisper_processor(audio, sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
predicted_ids = whisper_model.generate(whisper_inputs.input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
prompt += " " + transcription.strip()
except Exception as e:
print("Error during audio transcription:", e)
prompt += " [AUDIO_ERROR]"
# Debug: Print the final prompt for verification
print("Final fused prompt:", prompt)
# Generate text response using the text model
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = text_model.generate(**inputs, max_length=200)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# ------------------------------
# Gradio Interface for Hugging Face Spaces
# ------------------------------
iface = gr.Interface(
fn=multimodal_inference,
inputs=[
gr.inputs.Textbox(lines=5, placeholder="Enter your text here...", label="Text Input"),
gr.inputs.Image(type="pil", label="Image Input (Optional)"),
gr.inputs.Audio(source="upload", type="filepath", label="Audio Input (Optional)")
],
outputs="text",
title="Multi-Modal LLM Demo",
description="This demo accepts text, image, and audio inputs, processes each modality, and produces a text response."
)
if __name__ == "__main__":
iface.launch()