unidisc / demo /misc /client_simple_streamlit.py
aswerdlow's picture
Initial commit
131da64
raw
history blame
13.6 kB
import streamlit as st
import requests
from pathlib import Path
import base64
from PIL import Image
import numpy as np
import io
import uuid
from streamlit_drawable_canvas import st_canvas
from demo.api_data_defs import ChatRequest, ChatMessage, ContentPart
from typing import Dict
import time
import json
API_URL = "http://localhost:8000/v1/chat/completions"
DEMO_DIR = Path("demo")
def square_crop(image: Image.Image) -> Image.Image:
width, height = image.size
side = min(width, height)
left = (width - side) // 2
top = (height - side) // 2
right = left + side
bottom = top + side
return image.crop((left, top, right, bottom))
def process(image: Image.Image, desired_resolution: int = 256) -> Image.Image:
cropped_image = square_crop(image.convert("RGB"))
return cropped_image.resize(
(int(desired_resolution), int(desired_resolution)), Image.LANCZOS
)
DEMOS = [
{
"name": "Dog",
"image": DEMO_DIR / "assets" / "dog.jpg",
"mask": DEMO_DIR / "assets" / "dog.json",
"text": "A corgi playing in the snow",
},
{
"name": "Landscape",
"image": DEMO_DIR / "assets" / "mountain.jpg",
"mask": DEMO_DIR / "assets" / "mountain.json",
"text": "Snowy mountain peak.",
},
{
"name": "Architecture",
"image": DEMO_DIR / "assets" / "building.jpg",
"mask": DEMO_DIR / "assets" / "building.json",
"text": "Modern glass skyscraper",
}
]
# Custom CSS for animations and layout
st.markdown("""
<style>
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
.response-card {
animation: fadeIn 0.5s ease-in;
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 1rem;
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.demo-card {
position: relative;
border: 1px solid #e0e0e0;
border-radius: 8px;
overflow: hidden;
transition: all 0.2s ease;
cursor: pointer;
margin: 0.5rem;
padding: 0.5rem;
}
.demo-card:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
.demo-overlay {
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: rgba(0,0,0,0.3);
opacity: 0;
transition: opacity 0.2s ease;
}
.demo-card:hover .demo-overlay {
opacity: 1;
}
.demo-content {
position: relative;
padding: 0.5rem;
display: flex;
flex-direction: column;
align-items: center;
}
.demo-title {
font-weight: 600;
margin-bottom: 0.5rem;
color: #1a1a1a;
}
.demo-text {
font-size: 0.9rem;
color: #666;
line-height: 1.4;
}
.demo-image-container {
position: relative;
border-radius: 4px;
overflow: hidden;
margin-bottom: 0.5rem;
}
.stButton > button {
width: 95% !important;
margin: 0 auto !important;
display: block !important;
}
</style>
""", unsafe_allow_html=True)
def load_demo_assets(demo, config):
"""Load demo assets with error handling"""
try:
st.session_state.demo_image = process(Image.open(demo["image"]), config["resolution"])
st.session_state.original_image = np.array(st.session_state.demo_image)
st.session_state.demo_text = demo["text"]
if demo["mask"].exists():
with demo["mask"].open("r") as f:
print(f"Loaded mask from {demo['mask']}")
st.session_state.initial_drawing = json.load(f)
breakpoint()
else:
st.warning(f"Mask not found for {demo['name']}")
st.session_state.initial_drawing = None
except Exception as e:
st.error(f"Failed to load {demo['name']} demo: {str(e)}")
def encode_image(file: Path | io.BytesIO | Image.Image) -> Dict[str, str]:
if isinstance(file, Image.Image):
buffered = io.BytesIO()
file.save(buffered, format="JPEG")
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
elif isinstance(file, Path):
with file.open("rb") as img_file:
base64_str = base64.b64encode(img_file.read()).decode("utf-8")
else:
base64_str = base64.b64encode(file.getvalue()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
def encode_array_image(array: np.ndarray) -> Dict[str, str]:
im = Image.fromarray(array) if isinstance(array, np.ndarray) else array
buffered = io.BytesIO()
im.save(buffered, format="JPEG")
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
def get_boolean_mask(canvas_data):
if canvas_data is None or canvas_data.image_data is None:
return None, None
mask_data = canvas_data.json_data.get("objects", [])
if not mask_data:
return np.zeros_like(st.session_state.original_image, dtype=np.uint8), None
mask = np.zeros(st.session_state.original_image.shape[:2], dtype=np.uint8)
for obj in mask_data:
if obj.get("type") == "path":
path = obj.get("path")
# Custom processing of the path could be added here
return mask * 255, None
# Initialize session state variables
if "demo_image" not in st.session_state:
st.session_state.demo_image = None
if "demo_text" not in st.session_state:
st.session_state.demo_text = ""
if "initial_drawing" not in st.session_state:
st.session_state.initial_drawing = None
if "original_image" not in st.session_state:
st.session_state.original_image = None
if "stroke_image" not in st.session_state:
st.session_state.stroke_image = None
if "response" not in st.session_state:
st.session_state.response = None
# Main UI title and demo selection
st.title("Image + Text Input Demo")
# Add configuration options in sidebar before any processing
st.sidebar.header("Configuration")
config = {
"max_tokens": st.sidebar.number_input("Max Tokens", value=32, min_value=1, key="max_tokens"),
"resolution": st.sidebar.number_input("Resolution", value=256, min_value=64, key="resolution"),
"sampling_steps": st.sidebar.number_input("Sampling Steps", value=32, min_value=1, key="sampling_steps"),
"top_p": st.sidebar.number_input("Top P", value=0.95, min_value=0.0, max_value=1.0, key="top_p"),
"temperature": st.sidebar.number_input("Temperature", value=0.9, min_value=0.0, max_value=2.0, key="temperature"),
"maskgit_r_temp": st.sidebar.number_input("MaskGit R Temp", value=4.5, min_value=0.0, key="maskgit_r_temp"),
"cfg": st.sidebar.number_input("CFG", value=2.5, min_value=0.0, key="cfg"),
"sampler": st.sidebar.selectbox(
"Sampler",
options=["maskgit", "maskgit_nucleus", "ddpm_cache"],
index=1,
key="sampler"
),
"save_mask_enabled": True
}
st.subheader("Example Inputs")
with st.container():
cols = st.columns(len(DEMOS))
for col, demo in zip(cols, DEMOS):
with col:
try:
demo_html = f"""
<div class="demo-card" onclick="this.querySelector('button').click()">
<div class="demo-image-container">
<img src="{encode_image(process(Image.open(demo['image'])))['url']}" style="width:100%; height:auto; border-radius:4px;">
<div class="demo-overlay"></div>
</div>
<div class="demo-content">
<div class="demo-title">{demo['name']} Example</div>
<div class="demo-text">{demo['text']}</div>
</div>
</div>
"""
st.markdown(demo_html, unsafe_allow_html=True)
if st.button(f"Load {demo['name']}", key=f"demo_{demo['name']}"):
load_demo_assets(demo, config)
if not demo["image"].exists():
st.warning(f"Missing assets for {demo['name']}")
except Exception as e:
st.error(f"Error loading {demo['name']}: {str(e)}")
# Layout: two columns - left for input, right for output
col_input, col_output = st.columns(2)
with col_input:
st.subheader("Input")
# st.markdown('<div style="height: 0px;"></div>', unsafe_allow_html=True)
canvas_placeholder = st.empty()
user_input = st.text_input(
"Input — \"<m>\" denotes a mask token. \"<mN>\" denotes N.",
value=st.session_state.get("demo_text", "")
)
uploader_placeholder = st.empty()
# Always show uploader below canvas to allow image changes
with uploader_placeholder.container():
# Use a unique key for the uploader so it stays consistent
uploaded_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"], key="uploader")
if uploaded_file:
image = process(Image.open(uploaded_file), config["resolution"])
st.session_state.original_image = np.array(image)
# Render canvas only when an image is available
if st.session_state.original_image is not None:
print(f"Loading canvas...")
with canvas_placeholder.container():
canvas_result = st_canvas(
fill_color="rgba(0,0,0,0)",
stroke_width=6,
stroke_color="#000000",
background_image=Image.fromarray(st.session_state.original_image),
initial_drawing=st.session_state.initial_drawing,
height=256,
width=256,
drawing_mode="freedraw",
key="canvas"
)
else:
canvas_result = None
canvas_placeholder.empty()
# Add save mask button conditional on flag
if config["save_mask_enabled"] and canvas_result is not None and canvas_result.image_data is not None:
if st.button("💾 Save Current Mask", help="Save drawn mask as SVG"):
# Generate unique filename
save_dir = DEMO_DIR / "assets" / "saved_masks"
save_dir.mkdir(exist_ok=True)
filename = f"mask_{uuid.uuid4().hex[:8]}.json"
json_data = json.dumps(canvas_result.json_data)
(save_dir / filename).write_text(json_data)
st.session_state.last_saved_mask = {
"path": str(save_dir / filename),
"timestamp": time.time()
}
st.success(f"Mask saved as {filename}")
# Show save confirmation temporarily
if "last_saved_mask" in st.session_state and (time.time() - st.session_state.last_saved_mask["timestamp"]) < 5:
st.info(f"Last saved: {Path(st.session_state.last_saved_mask['path']).name}")
# Submission button
if st.button("Submit"):
if uploaded_file or user_input or st.session_state.demo_image:
with st.spinner("Generating response..."):
start_time = time.time()
mask, composite = get_boolean_mask(canvas_result)
messages = []
if user_input:
messages.append(ContentPart(type="text", text=user_input))
current_image = uploaded_file if uploaded_file else st.session_state.demo_image
if current_image:
if uploaded_file:
img_data = encode_image(io.BytesIO(uploaded_file.getvalue()))["url"]
else:
img_data = encode_image(current_image)["url"]
img_part = ContentPart(
type="image_url",
image_url={"url": img_data},
is_mask=False
)
messages.append(img_part)
print(f"mask is none: {mask is None}")
if mask is not None:
mask_data = encode_array_image(mask)["url"]
mask_part = ContentPart(
type="image_url",
image_url={"url": mask_data},
is_mask=True
)
messages.append(mask_part)
# print(f"messages: {messages}")
payload = ChatRequest(
messages=[ChatMessage(role="user", content=messages)],
model="unidisc",
**config # Use the config dictionary instead of inline sidebar inputs
).model_dump()
response = requests.post(API_URL, json=payload)
if response.status_code == 200:
st.session_state.response = response.json()
else:
st.error(f"API Error: {response.text}")
with col_output:
st.subheader("Output")
if st.session_state.response:
if "choices" in st.session_state.response:
content = st.session_state.response["choices"][0]["message"]["content"]
if isinstance(content, list):
for part in content:
if part["type"] == "text":
st.text_input(value=part["text"], label="Unmasked Text", disabled=True)
elif part["type"] == "image_url":
st.image(part["image_url"]["url"], use_container_width=False, width=256) # Set a fixed width
st.markdown('<div style="height: 10px;"></div>', unsafe_allow_html=True)
else:
st.text_input(value=content, label="Unmasked Text", disabled=True)