File size: 15,284 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

import functools
import itertools
import json
import math
import os
import random
import re
import shutil
import typing
import urllib
import zipfile
from pathlib import Path

import datasets
import fsspec
import pandas as pd
import requests
import tokenizers
import torch
import transformers
import utils
from decoupled_utils import rprint

def wt_detokenizer(string):
  # contractions
  string = string.replace("s '", "s'")
  string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string)
  # number separators
  string = string.replace(" @-@ ", "-")
  string = string.replace(" @,@ ", ",")
  string = string.replace(" @.@ ", ".")
  # punctuation
  string = string.replace(" : ", ": ")
  string = string.replace(" ; ", "; ")
  string = string.replace(" . ", ". ")
  string = string.replace(" ! ", "! ")
  string = string.replace(" ? ", "? ")
  string = string.replace(" , ", ", ")
  # double brackets
  string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string)
  string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string)
  string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string)
  string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string)
  string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string)
  # miscellaneous
  string = string.replace("= = = =", "====")
  string = string.replace("= = =", "===")
  string = string.replace("= =", "==")
  string = string.replace(" " + chr(176) + " ", chr(176))
  string = string.replace(" \n", "\n")
  string = string.replace("\n ", "\n")
  string = string.replace(" N ", " 1 ")
  string = string.replace(" 's", "'s")
  return string


def ptb_detokenizer(x):
  x = x.replace(" 's", "'s")
  x = x.replace("s ' ", "s' ")
  x = x.replace(" n't", "n't")
  x = x.replace(" \n ", "\n")
  x = x.replace("\\/", "/")
  for _ in range(10):
      x = x.replace(" N ", " 1 ")
  x = x.replace("$ 1", "$1")
  x = x.replace("# 1", "#1")
  x = x.replace("<unk>", "?")
  return x


def lm1b_detokenizer(x):
  x = x.replace('http : / / ', 'http://')
  x = x.replace('https : / / ', 'https://')
  x = re.sub(r' \'(\w+)', r"'\1", x)
  x = re.sub(r' (\w+) \. ', r' \1. ', x)
  x = re.sub(r' (\w+) \.$', r' \1.', x)
  x = x.replace(' ? ', '? ')
  x = re.sub(r' \?$', '?', x)
  x = x.replace(' ! ', '! ')
  x = re.sub(r' \!$', '!', x)
  x = x.replace(' , ', ', ')
  x = x.replace(' : ', ': ')
  x = x.replace(' ; ', '; ')
  x = x.replace(' / ', '/')
  x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x)
  x = re.sub(r'\' ([^\']+) \'', r"'\1'", x)
  x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x)
  x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x)
  x = x.replace('$ ', '$')
  x = x.replace('£ ', '£')
  return x


def lambada_detokenizer(text):
  text = text.replace("“", '"')
  text = text.replace("”", '"')
  return '\n'+text.strip()


def scientific_papers_detokenizer(x):
  x = wt_detokenizer(x)
  x = lm1b_detokenizer(x)
  return x


class Text8Tokenizer(transformers.PreTrainedTokenizer):
  def __init__(
    self,
    bos_token='[BOS]',
    eos_token='[EOS]',
    sep_token='[SEP]',
    cls_token='[CLS]',
    pad_token='[PAD]',
    mask_token='[MASK]',
    unk_token='[UNK]',
    **kwargs):
    self.characters = list('abcdefghijklmnopqrstuvwxyz ')
    self._vocab_str_to_int = {
      '[CLS]': 0,
      '[SEP]': 1,
      '[BOS]': 2,
      '[EOS]': 3,
      '[MASK]': 4,
      '[PAD]': 5,
      '[RESERVED]': 6,
      '[UNK]': 7,
      ** {ch: i + 8 for i, ch in enumerate(self.characters)}}
    self._vocab_int_to_str = {
      v: k for k, v in self._vocab_str_to_int.items()}
    super().__init__(
      bos_token=bos_token,
      eos_token=eos_token,
      sep_token=sep_token,
      cls_token=cls_token,
      pad_token=pad_token,
      mask_token=mask_token,
      unk_token=unk_token,
      **kwargs)

  @property
  def vocab_size(self) -> int:
    return len(self._vocab_str_to_int)

  def _tokenize(self, text: str, **kwargs):
    return list(text.lower())

  def _convert_token_to_id(self, token: str) -> int:
    return self._vocab_str_to_int.get(
      token, self._vocab_str_to_int['[UNK]'])

  def _convert_id_to_token(self, index: int) -> str:
    return self._vocab_int_to_str[index]

  def convert_tokens_to_string(self, tokens):
    return ''.join(tokens)

  def get_vocab(self) -> typing.Dict[str, int]:
    return self._vocab_str_to_int


def get_lambada_test_dataset():
    url = "https://openaipublic.blob.core.windows.net/gpt-2/data/lambada_test.jsonl"

    def read_jsonl_to_list(url):
      response = requests.get(url, stream=True)
      data_list = []

      # Process each line in the response content
      for line in response.iter_lines(decode_unicode=True):
        if line:
          data = json.loads(line)
          data_list.append(data)

      return data_list

    lambada_data = read_jsonl_to_list(url)
    dataset = datasets.Dataset.from_list(lambada_data)
    return dataset

def get_text8_dataset(cache_dir, max_seq_length=256,
                      drop_last=True, crop_train=False):
  """Adapted from:
    https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344

    Args:
      cache_dir: str, path to cache directory.
      max_seq_length: int, maximum length of sequences.
          (default: 256, as in D3PM codebase.)
      drop_last: bool, whether to drop the last incomplete
          batch. (default: True, as in D3PM codebase.)
      crop_train: bool, whether to subsample contiguous
          subsequences from training example. serves to
          make sure transformer models with absolute position
          embeddings do not have incorrect position-wise
          marginals. (default: False, but necessary to match D3PM AR)

    Returns:
      dataset: dataset.DatasetDict, with keys 'train',
          'valid', 'test'.
  """
  url = 'http://mattmahoney.net/dc/text8.zip'
  if not crop_train:
    cache_dir = f'{cache_dir}/text8'
  else:
    cache_dir = f'{cache_dir}/text8-crop-train'
  split_names = ['train', 'validation', 'test']
  if not all([
    utils.fsspec_exists(os.path.join(cache_dir, split))
    for split in split_names
  ]):
    # Check if raw data exists
    raw_cache_dir = os.path.join(cache_dir, 'raw_data')
    if not all([
      utils.fsspec_exists(
        os.path.join(raw_cache_dir, f'text8.{split}.txt'))
      for split in split_names
    ]):
      if not utils.fsspec_exists(
        os.path.join(raw_cache_dir, 'text8.zip')):
        utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True)
        print('Downloading text8 from URL {}.'.format(url))
        with (urllib.request.urlopen(url) as in_stream,
              open(os.path.join(raw_cache_dir, 'text8.zip'),
                   'wb') as out_file):
          shutil.copyfileobj(in_stream, out_file)

      with fsspec.open(
        os.path.join(raw_cache_dir, 'text8.zip'),
        'rb') as f:
        rawdata = zipfile.ZipFile(f).read(
          'text8').decode('utf-8')

      # Splits taken from D3PM codebase
      splits = {
        'train': rawdata[:90000000],
        'validation': rawdata[90000000: 95000000],
        'test': rawdata[95000000:],
      }

      for split, data in splits.items():
        _path = os.path.join(raw_cache_dir,
                             f'text8.{split}.txt')
        with fsspec.open(_path, 'w') as f:
          f.write(data)
    else:
      splits = {}
      for split in split_names:
        _path = os.path.join(raw_cache_dir,
                             f'text8.{split}.txt')
        with fsspec.open(_path, 'r') as f:
          splits[split] = f.read()

    # Chunk and save as datasets.DatasetDict
    def chunks(lst, n):
      """Yield successive n-sized chunks from lst."""
      for i in range(0, len(lst), n):
        yield lst[i:i + n]

    dataset_dict = {}
    for k, v in splits.items():
      if k == 'train' and crop_train == True:
        chunk_size = 2 * max_seq_length
      else:
        chunk_size = max_seq_length
      text = list(chunks(v, chunk_size))
      if drop_last and len(text[-1]) < chunk_size:
        text = text[:-1]
      dataset_dict[k] = datasets.Dataset.from_dict({'text': text})
    dataset = datasets.DatasetDict(dataset_dict)
    dataset.save_to_disk(cache_dir)
  else:
    dataset = datasets.load_from_disk(cache_dir)

  return dataset


def _group_texts(examples, block_size, bos, eos):
  # Concatenate all texts.
  concatenated_examples = list(itertools.chain(* examples['input_ids']))
  total_length = len(concatenated_examples)
  # TODO(yair): look into not dropping the remainder but rather padding it.
  # We drop the small remainder, and if the total_length < block_size - 2
  # we exclude this batch and return an empty dict.
  # We could add padding if the model supported it instead of
  # this drop, you can customize this part to your needs.
  new_block_size = block_size - 2  # [BOS] and [EOS] to be added
  total_length = (total_length // new_block_size) * new_block_size
  # Split by chunks of max_len.
  result = {}
  _values = []
  _attn_masks = []
  for i in range(0, total_length, new_block_size):
    _values.append(
      [bos]
      + concatenated_examples[i : i + new_block_size]
      + [eos])
    _attn_masks.append(torch.ones(block_size))
  result['input_ids'] = _values
  result['attention_mask'] = _attn_masks
  return result


def get_text_dataset(dataset_name, tokenizer, wrap, mode, cache_dir, block_size=1024, num_proc=len(os.sched_getaffinity(0)), streaming=False, **kwargs):
  if wrap:
    filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_wrapped.dat'
  else:
    filename = f'{dataset_name}_{mode}_bs{block_size}_{tokenizer.__class__.__name__}_unwrapped.dat'
  _path = os.path.join(cache_dir, filename)
  if utils.fsspec_exists(_path):
    print(f'Loading data from: {_path}')
    _dataset = datasets.load_from_disk(_path).with_format('torch')
    rprint(f"Sample 0: {_dataset[0]}")
    rprint(f"Sample -1: {_dataset[-1]}")
    return _dataset
  print(f'Generating new data at: {_path}')

  crop_train = dataset_name == 'text8-crop'
  if mode == 'train' and crop_train:
    # double block size for sub-sampling
    block_size *= 2
  
  if dataset_name == 'wikitext103':
    dataset = datasets.load_dataset(
      'wikitext',
      name='wikitext-103-raw-v1',
      cache_dir=cache_dir)
  elif dataset_name == 'wikitext2':
    dataset = datasets.load_dataset(
      'wikitext',
      name='wikitext-2-raw-v1',
      cache_dir=cache_dir)
  elif dataset_name == 'ptb':
    dataset = datasets.load_dataset(
      'ptb_text_only', cache_dir=cache_dir)
  elif dataset_name == 'lambada':
    dataset = get_lambada_test_dataset()
  elif dataset_name == 'text8':
    assert wrap
    dataset = get_text8_dataset(
      cache_dir, max_seq_length=block_size)
  elif dataset_name == 'text8-crop':
    dataset = get_text8_dataset(
      cache_dir, max_seq_length=block_size, crop_train=True)
  elif dataset_name == 'openwebtext-train':
    dataset = datasets.load_dataset(
      'openwebtext',
      split='train' if streaming else 'train[:-100000]',
      cache_dir=cache_dir,
      streaming=streaming, trust_remote_code=True)
  elif dataset_name == 'openwebtext-valid':
    dataset = datasets.load_dataset(
      'openwebtext',
      split='train' if streaming else 'train[-100000:]',
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'scientific_papers_arxiv':
    dataset = datasets.load_dataset(
      'scientific_papers', 'arxiv',
      trust_remote_code=True,
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'scientific_papers_pubmed':
    dataset = datasets.load_dataset(
      'scientific_papers', 'pubmed',
      trust_remote_code=True,
      cache_dir=cache_dir,
      streaming=streaming)
  elif dataset_name == 'ag_news':
    dataset = datasets.load_dataset(
      'ag_news',
      cache_dir=cache_dir,
      streaming=streaming)
  else:
    dataset = datasets.load_dataset(
      dataset_name,
      cache_dir=cache_dir,
      streaming=streaming,
      trust_remote_code=True)

  if dataset_name in ['lambada', 'openwebtext-train',
                      'openwebtext-valid']:
    data = dataset
  else:
    data = dataset[mode]

  if dataset_name.startswith('wikitext'):
    detokenizer = wt_detokenizer
  elif dataset_name == 'ptb':
    detokenizer = ptb_detokenizer
  elif dataset_name == 'lm1b':
    detokenizer = lm1b_detokenizer
  elif dataset_name == 'lambada':
    detokenizer = lambada_detokenizer
  elif dataset_name.startswith('scientific_papers'):
    detokenizer = scientific_papers_detokenizer
  else:
    detokenizer = None

  def _apply_detokenizer(detokenizer):
    def detok(text):
      for i, t in enumerate(text, 0):
        text[i] = detokenizer(t)
      return text
    return detok
  
  EOS = tokenizer.encode(tokenizer.eos_token)[0]
  BOS = tokenizer.encode(tokenizer.bos_token)[0]

  def preprocess_and_tokenize(example):
    if dataset_name == 'ptb':
      text = example['sentence']
    elif 'scientific_papers' in dataset_name:
      text = example['article']
    else:
      text = example['text']
    
    if detokenizer is not None:
      text = _apply_detokenizer(detokenizer)(text)

    tokenizer.padding_side = 'right'
    tokenizer.truncation_side = 'right'

    if wrap:
      tokens = tokenizer(text,
                         add_special_tokens=False,
                         return_attention_mask=False,
                         return_token_type_ids=False)
      tokens = {'input_ids':
                [t + [EOS] for t in tokens['input_ids']]}
      # Still missing BOS, but will be added in group_texts
    else:
      tokens = tokenizer(text,
                         max_length=block_size,
                         padding='max_length',
                         truncation=True,
                         add_special_tokens=True,
                         return_attention_mask=True,
                         return_token_type_ids=True)
    return tokens
  if streaming:
    tokenized_dataset = data.map(
      preprocess_and_tokenize,
      batched=True
    )
  else:
    rprint(f"Tokenizing with num_proc: {num_proc}")
    tokenized_dataset = data.map(
      preprocess_and_tokenize,
      batched=True,
      num_proc=num_proc,
      load_from_cache_file=True,
      desc='Tokenizing')
  if dataset_name == 'ptb':
    tokenized_dataset = tokenized_dataset.remove_columns(
      'sentence')
  elif 'scientific_papers' in dataset_name:
    tokenized_dataset = tokenized_dataset.remove_columns([
      'article', 'abstract', 'section_names'])
  elif dataset_name == 'ag_news':
    tokenized_dataset = tokenized_dataset.remove_columns(
      ['text', 'label'])
  else:
    tokenized_dataset = tokenized_dataset.remove_columns(
      'text')

  if not wrap:
    if streaming is False:
      tokenized_dataset.save_to_disk(_path)
    return tokenized_dataset.with_format('torch')

  group_texts = functools.partial(
    _group_texts, block_size=block_size, bos=BOS, eos=EOS)
  if streaming:
    chunked_dataset = tokenized_dataset.map(
      group_texts,
      batched=True)
  else:
    chunked_dataset = tokenized_dataset.map(
      group_texts,
      batched=True,
      num_proc=num_proc,
      load_from_cache_file=True,
      desc='Grouping')
    chunked_dataset.save_to_disk(_path)
  chunked_dataset = chunked_dataset.with_format('torch')
  return chunked_dataset