File size: 28,718 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import os
import shutil
import signal
import sys
import time
from contextlib import ExitStack
from functools import partial
from pathlib import Path

from accelerate.utils import gather_object, gather
from torchinfo import summary

from unidisc.tokenizers.chameleon_tokenizers import tokenize_chameleon, tokenize_chameleon_fast, get_chameleon_images, decode_ids, decode_ids_batched, tokenize_chameleon_mmc4, tokenize_regular_cambrian_mmc4
from utils import _print_config, set_numa_affinity, set_omega_conf_resolvers

sys.path.append(str(Path(__file__).parent.parent.parent / "unidisc/misc/hydra_submitit_launcher"))

import json
import os
import random
import sys
from contextlib import nullcontext
from pathlib import Path

import fsspec
import hydra
import numpy as np
import omegaconf
import rich.syntax
import rich.tree
import torch
from accelerate import Accelerator
from PIL import Image
from tensordict import TensorDict
from tqdm import tqdm
try:
    from viztracer import VizTracer
except ImportError:
    print("VizTracer not installed, skipping")

from dataloader import get_dataloaders, get_tokenizer, tokenize_text
from decoupled_utils import (barrier, breakpoint_on_error, get_local_rank, get_rank, get_world_size,
                             is_local_main_process, is_main_process,
                             rank_zero_fn, rprint, set_global_breakpoint,
                             set_global_exists, gprint)
from model import decode_latents, get_image_batch, get_vae
from models.datasets.combine_token_dicts import main as combine_token_dicts
from models.datasets.vggface_v2_attributes import (get_inference_func,
                                                   get_output)
from utils import (_print_config, set_numa_affinity, set_omega_conf_resolvers,
                   set_torch_defaults)
from omegaconf import DictConfig, OmegaConf, open_dict, read_write

os.environ["HYDRA_FULL_ERROR"] = "1"

set_global_breakpoint()  # Overrides breakpoint() to use ipdb.set_trace() instead and handle distributed training
set_global_exists()
set_omega_conf_resolvers()
set_torch_defaults()

def get_batch_size(config):
    with open_dict(config):
        if any(x.lower() in torch.cuda.get_device_name().lower() for x in ["v100", "1080", "2080", "quadro", "titan"]) or torch.cuda.get_device_capability()[0] <= 7:
            config.trainer.precision = "no"
            config.model.force_optimized_native_attn = False
            config.trainer.compile = False
            config.loader.batch_size = config.loader.batch_size // 3
            print(f"Found {torch.cuda.get_device_name().lower()}, set batch size to {config.loader.batch_size}")
    return config

def enc(data, idx, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data, existing_ids=None, device=None, mapping=None):
    
    if isinstance(batch, list):
        bs = len(batch)
    elif "img" in batch:
        bs = batch["img"].shape[0]
    else:
        bs = batch["attention_mask"].shape[0]
    
    sl = slice(idx * bs, (idx + 1) * bs)
    if not isinstance(batch, list) and "idx" in batch:
        if set(data[sl]["idx"].flatten().tolist()) == set(batch["idx"].tolist()):
            rprint(f"Skipping {idx} as all samples have already been processed 1")
            return
        if existing_ids is not None:
            set_inter = set(batch["idx"].tolist()) & existing_ids
            if len(set_inter) == bs:
                rprint(f"Skipping {idx} as all samples have already been processed 2")
                return
            elif len(set_inter) > 0:
                rprint(f"Running {idx} as some samples have already been processed: {len(set_inter)}")
    else:
        if (data[sl]["idx"] != -1).all():
            rprint(f"Skipping {idx} as all samples have already been processed")
            return
    
    if not isinstance(batch, list) and "img" in batch:
        batch["img"] = batch["img"].to(device=device, dtype=torch.bfloat16 if mixed_precision else None)

    with torch.no_grad():
        with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=mixed_precision):
            use_chameleon = getattr(config.data, "use_chameleon", False)
            use_mmc4 = config.data.train == "mmc4"
            use_cambrian = config.data.train == "cambrian"
            if not use_chameleon and not use_mmc4 and not use_cambrian:
                if tokenizer is not None and getattr(config.model, "unified_model", False):
                    if "input_ids" in batch and "attention_mask" in batch:
                        tokens = batch
                    else:
                        tokens = tokenize_text(tokenizer, config.data.block_size, batch[".txt"])

                    batch["txt_input_ids"] = tokens["input_ids"]
                    batch["txt_attention_mask"] = tokens["attention_mask"].float()
                elif getattr(config.data, "add_vggface_v2_attributes", False) and "vggface" not in config.data.train:
                    txt_input_ids, txt_attention_mask = get_output(batch, **vgg_data)
                    batch["txt_input_ids"] = txt_input_ids
                    batch["txt_attention_mask"] = txt_attention_mask
                elif getattr(config.data, "txt_only", False):
                    batch["txt_input_ids"] = batch["input_ids"]
                    batch["txt_attention_mask"] = batch["attention_mask"]

            if getattr(config.model, "unified_model", False) is False:
                if getattr(config.data, "txt_only", False):
                    batch["modality"] = torch.full((bs, 1), fill_value=0, dtype=torch.int16)
                else:
                    batch["modality"] = torch.full((bs, 1), fill_value=1, dtype=torch.int16)

            if isinstance(batch, list) and batch[0].get("idx", None) is not None:
                _idx = torch.tensor([x["idx"] for x in batch], dtype=torch.int32).unsqueeze(-1)
            elif "idx" in batch:
                _idx = batch["idx"].to(torch.int32).unsqueeze(-1)
            else:
                _idx = torch.full((bs, 1), fill_value=0, dtype=torch.int32)

            if "is_valid" in batch:
                _idx[~batch["is_valid"]] = -1
                if (_idx == -1).all():
                    gprint(f"WARNING: All samples are invalid")

            sl = slice(idx * bs, (idx + 1) * bs)
            assert (idx + 1) * bs <= len(data), f"Index {idx} + batch size {bs} is greater than the data length {len(data)}"

            if encode_images:
                if use_chameleon:
                    if isinstance(batch, list):
                        all_input_ids, all_attention_masks = tokenize_chameleon_mmc4(config, tokenizer, vae, batch, device, mapping)
                    else:
                        all_input_ids, all_attention_masks = tokenize_chameleon_fast(config, tokenizer, vae, batch)

                    # all_input_ids_gt, all_attention_masks_gt = tokenize_chameleon(config, tokenizer, vae, batch)
                    # txt_tokens, img_tokens = decode_ids_batched(_vae, all_input_ids[:4], return_tokens=True)
                    # img = decode_latents(config, _vae, img_tokens)
                    # from image_utils import Im;  Im(img).save()

                elif use_mmc4 or use_cambrian:
                    all_input_ids, all_attention_masks, all_modality = tokenize_regular_cambrian_mmc4(config, tokenizer, vae, batch, device, mapping)
                    if all_input_ids is None:
                        return
                else:
                    image_ids = get_image_batch(config, vae, batch, device)

                if use_chameleon or use_mmc4 or use_cambrian:
                    if not use_chameleon:
                        assert (all_input_ids < torch.iinfo(torch.int16).max).all()
                    
                    _kwargs = {}
                    if use_mmc4 or use_cambrian:
                        _kwargs["modality"] = all_modality.to(torch.int8)

                    data[sl] = TensorDict(
                        {
                            "input_ids": all_input_ids.to(torch.int32 if use_chameleon else torch.int16),
                            "attention_mask": all_attention_masks.to(torch.bool),
                            "idx": _idx,
                            "write_flag": torch.ones((bs, 1), dtype=torch.bool),
                            **_kwargs,
                        },
                        batch_size=[bs],
                    )
                elif getattr(config.model, "cond_label", False):
                    data[sl] = TensorDict(
                        {
                            "img_input_ids": image_ids.to(torch.int16),
                            "img_label": batch["label"].to(torch.int32).unsqueeze(-1),
                            "idx": _idx,
                            "write_flag": torch.ones((bs, 1), dtype=torch.bool),
                        },
                        batch_size=[bs],
                    )
                elif getattr(config.model, "unified_model", False) or getattr(config.data, "add_vggface_v2_attributes", False):
                    data[sl] = TensorDict(
                        {
                            "img_input_ids": image_ids.to(torch.int16),
                            "txt_input_ids": (batch.get("txt_input_ids") if batch.get("txt_input_ids") is not None else batch["input_ids"]).to(
                                torch.int32
                            ),
                            "txt_attention_mask": (
                                batch.get("txt_attention_mask") if batch.get("txt_attention_mask") is not None else batch["attention_mask"]
                            ).to(torch.bool),
                            "idx": _idx,
                            "write_flag": torch.ones((bs, 1), dtype=torch.bool),
                        },
                        batch_size=[bs],
                    )
                else:
                    data[sl] = TensorDict(
                        {"input_ids": image_ids.to(torch.int32), "attention_mask": torch.ones((image_ids.shape[0], image_ids.shape[1]), dtype=torch.bool), "idx": _idx, "write_flag": torch.ones((bs, 1), dtype=torch.bool), "modality": batch["modality"].to(torch.int16)},
                        batch_size=[bs],
                    )

            elif getattr(config.data, "txt_only", False):
                data[sl] = TensorDict(
                    {"input_ids": batch['input_ids'].to(torch.int32), "attention_mask": batch['attention_mask'].to(torch.bool), "idx": _idx, "write_flag": torch.ones((bs, 1), dtype=torch.bool), "modality": batch["modality"].to(torch.int16)},
                    batch_size=[bs],
                )
            else:
                real_image = batch["img"]
                if (config.data.resolution == 512 and batch["img"].shape[0] > 16) or (config.model.downscale_ratio <= 8):
                    chunk_size = 8 if (config.model.image_vocab_size > 64000 or config.model.downscale_ratio <= 8) else 16
                    chunks = [batch["img"][i : i + chunk_size] for i in range(0, batch["img"].shape[0], chunk_size)]
                    rec_img_list = []
                    for chunk in chunks:
                        batch_chunk = {"img": chunk}
                        image_ids = get_image_batch(config, vae, batch_chunk, device)
                        rec_img = decode_latents(config, vae, image_ids)
                        rec_img_list.append(rec_img)
                    rec_img = torch.cat(rec_img_list, dim=0)
                else:
                    image_ids = get_image_batch(config, vae, batch, device)
                    rec_img = decode_latents(config, vae, image_ids)

                viz_img = torch.cat([real_image, rec_img], dim=-1)
                from image_utils import Im
                
                if getattr(config.model, 'custom_vae_name', None) is not None:
                    custom_str = getattr(config.model, 'custom_vae_name')
                else:
                    custom_str = f"{'_custom' if getattr(config.model, 'use_custom_vae_ckpt', False) else ''}"
                (Path(__file__).parent.parent.parent / "output").mkdir(parents=True, exist_ok=True)
                Im(viz_img).save(
                    Path(__file__).parent.parent.parent / f"output/{config.data.train.replace('/', '')}_seq{image_ids.shape[1]}_res{config.data.resolution}_{config.model.vae_type}{custom_str}_voc{config.model.image_vocab_size}.png"
                )
                
                # Create directories for saving images
                dataset_name = config.data.train.replace('/', '')
                vae_name = f"seq{image_ids.shape[1]}_res{config.data.resolution}_{config.model.vae_type}{custom_str}_voc{config.model.image_vocab_size}"
                output_dir = Path(__file__).parent.parent.parent / "output" / dataset_name / vae_name
                gt_output_dir = Path(__file__).parent.parent.parent / "output" / dataset_name / f"GT_{config.data.resolution}"
                output_dir.mkdir(parents=True, exist_ok=True)
                gt_output_dir.mkdir(parents=True, exist_ok=True)

                # Save each image separately
                for i, (real, rec) in enumerate(zip(real_image, rec_img)):
                    print(Im(rec).save(output_dir / f"{i}.png"))
                    if (gt_output_dir / f"{i}.png").exists() is False:
                        print(Im(real).save(gt_output_dir / f"{i}.png"))

                gprint(f"Exiting")
                exit()


def get_dict(config, dataset_size):
    if getattr(config.data, "use_chameleon", False) or config.data.train == "cambrian" or config.data.train == "mmc4":
        input_ids_dtype = torch.int32 if getattr(config.data, "use_chameleon", False) else torch.int16
        data = TensorDict(
            {
                "input_ids": torch.zeros(dataset_size, config.model.length, dtype=input_ids_dtype),
                "attention_mask": torch.zeros(dataset_size, config.model.length, dtype=torch.bool),
                "modality": torch.full((dataset_size, config.model.length), fill_value=-1, dtype=torch.int8),
                "idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
                "write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
            },
            batch_size=[dataset_size],
        )
    elif getattr(config.model, "cond_label", False):
        data = TensorDict(
            {
                "img_input_ids": torch.zeros(dataset_size, config.model.img_length, dtype=torch.int16),
                "img_label": torch.zeros(dataset_size, 1, dtype=torch.int32),
                "idx": torch.full((dataset_size,), fill_value=-1, dtype=torch.int32),
                "write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
            },
            batch_size=[dataset_size],
        )
    elif getattr(config.model, "unified_model", False) or getattr(config.data, "add_vggface_v2_attributes", False):
        data = TensorDict(
            {
                "img_input_ids": torch.zeros(dataset_size, config.model.img_length, dtype=torch.int16),
                "txt_input_ids": torch.zeros(dataset_size, config.model.txt_length, dtype=torch.int32),
                "txt_attention_mask": torch.zeros(dataset_size, config.model.txt_length, dtype=torch.bool),
                "idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
                "write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
            },
            batch_size=[dataset_size],
        )
    else:
        data = TensorDict(
            {
                "input_ids": torch.zeros(dataset_size, config.model.txt_length if config.data.txt_only else config.model.img_length, dtype=torch.int16),
                "idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
                "write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
                "modality": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int16),
            },
            batch_size=[dataset_size],
        )
    return data

def signal_handler(signum, frame, train_data, tmp_path):
    """Handle signals to save temporary train data."""
    rprint(f"Received signal {signum}, saving temporary train data.")
    print(f"[PRINT] Received signal {signum}, saving temporary train data.")
    save_tmp_data(train_data, tmp_path)
    sys.exit

def save_tmp_data(data, tmp_path):
    """Save data to a temporary path."""
    if tmp_path.exists() and tmp_path.is_dir():
        rprint(f"Deleting {tmp_path}")
        shutil.rmtree(tmp_path)  # Delete old tmp directory if it exists
    rprint(f"Saving tmp data to {tmp_path}")
    data.memmap(tmp_path, copy_existing=True)

def periodic_save(data, tmp_path, start_time, interval=2 * 60 * 60):
    """Periodically save data to a temporary path."""
    current_time = time.time()
    if current_time - start_time >= interval:
        rprint(f"Hit periodic save interval, saving tmp data to {tmp_path}")
        save_tmp_data(data, tmp_path)
        return current_time  # Reset start time
    return start_time

@hydra.main(version_base=None, config_path="../../configs", config_name="config")
def main(config):
    """Main entry point for training."""
    
    try:
        import resource
        soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE)
        resource.setrlimit(resource.RLIMIT_NOFILE, (hard_limit, hard_limit)) # Set the soft limit to the hard limit
        rprint(f"Successfully set RLIMIT_NOFILE to {hard_limit}")
    except Exception as e:
        rprint(f"Failed to set RLIMIT_NOFILE: {e}")

    mixed_precision = False
    train_start_time = time.time()

    from datetime import timedelta
    from accelerate import Accelerator, DataLoaderConfiguration
    from accelerate.utils import InitProcessGroupKwargs
    kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=3600))
    prepare_kwargs = {}
    if config.data.train == "mmc4":
        prepare_kwargs["dispatch_batches"] = False

    accelerator = Accelerator(mixed_precision="bf16" if mixed_precision else None, kwargs_handlers=[kwargs], dataloader_config=DataLoaderConfiguration(**prepare_kwargs))
    device = torch.device(f"cuda:{accelerator.local_process_index}")

    import socket
    hostname = socket.gethostname()
    print(f"Hostname: {hostname}, Process index: {accelerator.process_index}, {device}, local_process_index: {accelerator.local_process_index}, get_local_process_index: {get_local_rank()}, device: {device}")
    _print_config(config, resolve=True, save_cfg=True)

    config = get_batch_size(config)

    # with omegaconf.open_dict(config):
    #     batch_sizes = gather_object([config.loader.batch_size])
    #     rprint(f"Batch sizes: {batch_sizes}")
    #     smallest_batch_size = min(batch_sizes)
    #     config.loader.batch_size = smallest_batch_size
    #     rprint(f"New config batch size: {config.loader.batch_size}")

    prefix = f"[Rank {accelerator.process_index}/{accelerator.num_processes}, Node: {os.environ.get('SLURM_NODEID', 'N/A')}, Hostname: {os.environ.get('SLURM_JOB_NODELIST', 'N/A')}, {config.data.train}]"
    print(f"{prefix} Starting precomputing tokens")
    save_validation_dataloader = getattr(config.data, "save_validation_dataloader", False)
    save_train_dataloader = getattr(config.data, "save_train_dataloader", False)

    tokenizer = get_tokenizer(config)
    train_dataloader, val_dataloader = get_dataloaders(
        config, tokenizer=tokenizer, allow_aug=False, force_aug=getattr(config.data, "force_aug", False), skip_valid=not save_validation_dataloader
    )

    train_dataloader = accelerator.prepare(train_dataloader)
    if save_validation_dataloader:
        val_dataloader = accelerator.prepare(val_dataloader)
    encode_images = getattr(config.model, "encode_images", False)

    use_chameleon = getattr(config.data, "use_chameleon", False)
    use_mmc4 = config.data.train == "mmc4"
    use_cambrian = config.data.train == "cambrian"
    mapping = None

    if use_chameleon:
        from unidisc.tokenizers.chameleon_tokenizers import ItemProcessor
        vae = ItemProcessor(target_size=config.data.resolution)
    else:
        vae = get_vae(config, device)

    if use_mmc4:
        import pandas as pd
        mapping = pd.read_parquet(config.data.mmc4_mapping_parquet)
        # Keep tar_filepath if it exists, otherwise use shard_path or map img2dataset_shard_id
        if "tar_filepath" in mapping.columns:
            pass
        elif "shard_path" in mapping.columns:
            mapping = mapping.rename(columns={"shard_path": "tar_filepath"})
            mapping["tar_filepath"] = mapping["tar_filepath"].str.replace(".parquet", ".tar")
        else:
            tar_path = Path(config.data.mmc4_tar_path)
            mapping["tar_filepath"] = mapping["img2dataset_shard_id"].apply(lambda x: tar_path / f"{x}.tar")
        
        mapping = mapping[['url', 'tar_filepath', 'key']]
        mapping = mapping.set_index("url").sort_index()

    if use_mmc4 or use_cambrian:
        assert config.data.use_slow_tokenizer and config.data.add_image_token

    if config.data.iterable:
        train_dataset_size = getattr(config.data, "train_dataset_size", None)
    else:
        print(f"{prefix} Train dataloader: {len(train_dataloader)} batches")
        print(f"{prefix} Train underlying dataset: {len(train_dataloader.dataset)} samples")
        train_dataset_size = (len(train_dataloader.dataset) // accelerator.num_processes) + config.loader.batch_size
        if save_validation_dataloader:
            print(f"{prefix} Val dataloader: {len(val_dataloader)} batches")
            print(f"Val underlying dataset: {len(val_dataloader.dataset)} samples")
            val_dataset_size = (len(val_dataloader.dataset) // accelerator.num_processes) + config.loader.batch_size

    print(f"{prefix} Train dataset size: {train_dataset_size} for 1 GPU")
    if save_validation_dataloader:
        print(f"{prefix} Val dataset size: {val_dataset_size} for 1 GPU")

    rank = accelerator.process_index
    output_dir = config.data.token_output_dir
    output_dir = Path(f"{output_dir}")
    output_dir.mkdir(parents=True, exist_ok=True)
    assert config.data.force_disable_shuffle

    debug = getattr(config.data, "debug", False)
    print(f"{prefix} Output dir: {output_dir}")

    vgg_data = None
    if getattr(config.data, "add_vggface_v2_attributes", False):
        print(f"{prefix} Adding VGGFace V2 attributes")
        vgg_data = get_inference_func()
        vgg_data["model"] = accelerator.prepare(vgg_data["model"])
    
    if not config.data.split_dataset and is_main_process() and any(output_dir.iterdir()):
        rprint(f"Found temporary directories in output dir, combining them")
        combine_token_dicts(output_dir, use_tmp=False, use_timestamp=True, delete_after_combining=True)
        for item in output_dir.iterdir():
            if item.is_dir() and "tmp" in item.name:
                rprint(f"Removing temporary directory: {item}")
                shutil.rmtree(item)

    # barrier() # TODO: Should be a barrier here
    if not config.data.split_dataset:
        existing_folders = sorted([folder for folder in output_dir.iterdir() if folder.is_dir() and "existing" in folder.name])
        if existing_folders:
            rprint(f"Found existing folders: {existing_folders}")
            existing_data = torch.cat([TensorDict.load_memmap(folder) for folder in existing_folders], dim=0)
            rprint(f"Concatenated existing data with shape: {existing_data.shape}")
            existing_ids = set(existing_data["idx"].to(torch.int32).flatten().tolist())
        else:
            rprint("No existing folders found")
            existing_ids = None
    else:
        existing_ids = None
    
    if save_train_dataloader:
        if not config.data.split_dataset and getattr(config.data, "allow_load_from_tmp", True) and Path(output_dir / f"tmp_train_{rank}").exists():
            rprint("Found tmp_train_{rank} in output dir, loading from it")
            train_data = TensorDict.load_memmap(output_dir / f"tmp_train_{rank}")
            train_data = train_data.clone()
        else:
            train_data = get_dict(config, train_dataset_size)

        print(f"{prefix} Starting train dataloader")
        if config.data.split_dataset:
            rank = int(os.getenv("SLURM_ARRAY_TASK_ID"))
            print(f"Using task id: {rank}")

        split_path = output_dir / f"train_{rank}"
        tmp_train_path = output_dir / f"tmp_train_{rank}"

        signal.signal(signal.SIGUSR1, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))
        signal.signal(signal.SIGUSR2, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))

        try:
            signal.signal(signal.SIGKILL, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))
        except:
            rprint(f"Failed to set SIGKILL handler")

        start_time = time.time()
        with VizTracer(output_file="optional.json", tracer_entries=5000000) if debug else nullcontext():
            for i, batch in tqdm(enumerate(train_dataloader), leave=False, disable=not is_local_main_process()):
                if i == 0 and "img" in batch:
                    print(f"Batch shape: {batch['img'].shape}")
                if debug and i >= 1:
                    break
                enc(train_data, i, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data=vgg_data, existing_ids=existing_ids, device=device, mapping=mapping)
                try:
                    if not config.data.split_dataset or True:
                        start_time = periodic_save(train_data, tmp_train_path, start_time, getattr(config.data, "periodic_save", 2 * 60 * 60))
                except Exception as e:
                    gprint(f"Failed to save train data: {e}")
                    start_time = time.time()

        if debug:
            exit()

        del train_dataloader
        print(f"{prefix} Saving train data")
        if split_path.exists() and split_path.is_dir():
            rprint(f"Removing {split_path}")
            shutil.rmtree(split_path)

        split_path.mkdir(parents=True, exist_ok=True)
        gprint(f"Saving train data to {split_path}: {train_data.shape}")
        train_data.memmap(split_path, copy_existing=True)

        if tmp_train_path.exists() and tmp_train_path.is_dir():
            rprint(f"Removing {tmp_train_path}")
            shutil.rmtree(tmp_train_path)

        if not config.data.split_dataset:
            with open(output_dir / f"train_{rank}.completed", 'w') as f:
                f.write(f"Processing done for rank {rank}\n")

        print(f"{prefix} Finished train dataloader")

    if save_validation_dataloader:
        val_data = get_dict(config, val_dataset_size)
        split_path = output_dir / f"val_{rank}"
        split_path.mkdir(parents=True, exist_ok=True)
        tmp_val_path = output_dir / f"tmp_val_{rank}"
        print(f"Starting val dataloader")
        start_time = time.time()  # Track start time for periodic saving
        for i, batch in tqdm(enumerate(val_dataloader), leave=False):
            if debug and i >= 10:
                break
            enc(val_data, i, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data=vgg_data, device=device)
            
            # Periodically save data
            start_time = periodic_save(val_data, tmp_val_path, start_time)

        print(f"{prefix} Saving val data")
        if split_path.exists() and split_path.is_dir():
            rprint(f"Removing {split_path}")
            shutil.rmtree(split_path)
        split_path.mkdir(parents=True, exist_ok=True)
        rprint(f"Saving val data to {split_path}")
        val_data.memmap(split_path, copy_existing=True)
        if tmp_val_path.exists() and tmp_val_path.is_dir():
            shutil.rmtree(tmp_val_path)  # Delete tmp directory after final save
        print(f"{prefix} Finished val dataloader")

    rprint(f"{prefix} Finished precomputing tokens")

    if config.data.split_dataset:
        rprint(f"We are splitting the dataset and thus exiting.")
        exit()

    if get_world_size() > 1 and (time.time() - train_start_time) > 60 * 60:
        time.sleep(60 * 60)
        barrier()

    rprint('after barrier')
    if is_main_process():
        combine_token_dicts(data_dir=output_dir, allow_zero_idx=True, move_files=True, delete_after_combining=True)

    barrier()
    rprint(f"Finished concating tokens")


if __name__ == "__main__":
    with breakpoint_on_error():
        main()