File size: 28,718 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import os
import shutil
import signal
import sys
import time
from contextlib import ExitStack
from functools import partial
from pathlib import Path
from accelerate.utils import gather_object, gather
from torchinfo import summary
from unidisc.tokenizers.chameleon_tokenizers import tokenize_chameleon, tokenize_chameleon_fast, get_chameleon_images, decode_ids, decode_ids_batched, tokenize_chameleon_mmc4, tokenize_regular_cambrian_mmc4
from utils import _print_config, set_numa_affinity, set_omega_conf_resolvers
sys.path.append(str(Path(__file__).parent.parent.parent / "unidisc/misc/hydra_submitit_launcher"))
import json
import os
import random
import sys
from contextlib import nullcontext
from pathlib import Path
import fsspec
import hydra
import numpy as np
import omegaconf
import rich.syntax
import rich.tree
import torch
from accelerate import Accelerator
from PIL import Image
from tensordict import TensorDict
from tqdm import tqdm
try:
from viztracer import VizTracer
except ImportError:
print("VizTracer not installed, skipping")
from dataloader import get_dataloaders, get_tokenizer, tokenize_text
from decoupled_utils import (barrier, breakpoint_on_error, get_local_rank, get_rank, get_world_size,
is_local_main_process, is_main_process,
rank_zero_fn, rprint, set_global_breakpoint,
set_global_exists, gprint)
from model import decode_latents, get_image_batch, get_vae
from models.datasets.combine_token_dicts import main as combine_token_dicts
from models.datasets.vggface_v2_attributes import (get_inference_func,
get_output)
from utils import (_print_config, set_numa_affinity, set_omega_conf_resolvers,
set_torch_defaults)
from omegaconf import DictConfig, OmegaConf, open_dict, read_write
os.environ["HYDRA_FULL_ERROR"] = "1"
set_global_breakpoint() # Overrides breakpoint() to use ipdb.set_trace() instead and handle distributed training
set_global_exists()
set_omega_conf_resolvers()
set_torch_defaults()
def get_batch_size(config):
with open_dict(config):
if any(x.lower() in torch.cuda.get_device_name().lower() for x in ["v100", "1080", "2080", "quadro", "titan"]) or torch.cuda.get_device_capability()[0] <= 7:
config.trainer.precision = "no"
config.model.force_optimized_native_attn = False
config.trainer.compile = False
config.loader.batch_size = config.loader.batch_size // 3
print(f"Found {torch.cuda.get_device_name().lower()}, set batch size to {config.loader.batch_size}")
return config
def enc(data, idx, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data, existing_ids=None, device=None, mapping=None):
if isinstance(batch, list):
bs = len(batch)
elif "img" in batch:
bs = batch["img"].shape[0]
else:
bs = batch["attention_mask"].shape[0]
sl = slice(idx * bs, (idx + 1) * bs)
if not isinstance(batch, list) and "idx" in batch:
if set(data[sl]["idx"].flatten().tolist()) == set(batch["idx"].tolist()):
rprint(f"Skipping {idx} as all samples have already been processed 1")
return
if existing_ids is not None:
set_inter = set(batch["idx"].tolist()) & existing_ids
if len(set_inter) == bs:
rprint(f"Skipping {idx} as all samples have already been processed 2")
return
elif len(set_inter) > 0:
rprint(f"Running {idx} as some samples have already been processed: {len(set_inter)}")
else:
if (data[sl]["idx"] != -1).all():
rprint(f"Skipping {idx} as all samples have already been processed")
return
if not isinstance(batch, list) and "img" in batch:
batch["img"] = batch["img"].to(device=device, dtype=torch.bfloat16 if mixed_precision else None)
with torch.no_grad():
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=mixed_precision):
use_chameleon = getattr(config.data, "use_chameleon", False)
use_mmc4 = config.data.train == "mmc4"
use_cambrian = config.data.train == "cambrian"
if not use_chameleon and not use_mmc4 and not use_cambrian:
if tokenizer is not None and getattr(config.model, "unified_model", False):
if "input_ids" in batch and "attention_mask" in batch:
tokens = batch
else:
tokens = tokenize_text(tokenizer, config.data.block_size, batch[".txt"])
batch["txt_input_ids"] = tokens["input_ids"]
batch["txt_attention_mask"] = tokens["attention_mask"].float()
elif getattr(config.data, "add_vggface_v2_attributes", False) and "vggface" not in config.data.train:
txt_input_ids, txt_attention_mask = get_output(batch, **vgg_data)
batch["txt_input_ids"] = txt_input_ids
batch["txt_attention_mask"] = txt_attention_mask
elif getattr(config.data, "txt_only", False):
batch["txt_input_ids"] = batch["input_ids"]
batch["txt_attention_mask"] = batch["attention_mask"]
if getattr(config.model, "unified_model", False) is False:
if getattr(config.data, "txt_only", False):
batch["modality"] = torch.full((bs, 1), fill_value=0, dtype=torch.int16)
else:
batch["modality"] = torch.full((bs, 1), fill_value=1, dtype=torch.int16)
if isinstance(batch, list) and batch[0].get("idx", None) is not None:
_idx = torch.tensor([x["idx"] for x in batch], dtype=torch.int32).unsqueeze(-1)
elif "idx" in batch:
_idx = batch["idx"].to(torch.int32).unsqueeze(-1)
else:
_idx = torch.full((bs, 1), fill_value=0, dtype=torch.int32)
if "is_valid" in batch:
_idx[~batch["is_valid"]] = -1
if (_idx == -1).all():
gprint(f"WARNING: All samples are invalid")
sl = slice(idx * bs, (idx + 1) * bs)
assert (idx + 1) * bs <= len(data), f"Index {idx} + batch size {bs} is greater than the data length {len(data)}"
if encode_images:
if use_chameleon:
if isinstance(batch, list):
all_input_ids, all_attention_masks = tokenize_chameleon_mmc4(config, tokenizer, vae, batch, device, mapping)
else:
all_input_ids, all_attention_masks = tokenize_chameleon_fast(config, tokenizer, vae, batch)
# all_input_ids_gt, all_attention_masks_gt = tokenize_chameleon(config, tokenizer, vae, batch)
# txt_tokens, img_tokens = decode_ids_batched(_vae, all_input_ids[:4], return_tokens=True)
# img = decode_latents(config, _vae, img_tokens)
# from image_utils import Im; Im(img).save()
elif use_mmc4 or use_cambrian:
all_input_ids, all_attention_masks, all_modality = tokenize_regular_cambrian_mmc4(config, tokenizer, vae, batch, device, mapping)
if all_input_ids is None:
return
else:
image_ids = get_image_batch(config, vae, batch, device)
if use_chameleon or use_mmc4 or use_cambrian:
if not use_chameleon:
assert (all_input_ids < torch.iinfo(torch.int16).max).all()
_kwargs = {}
if use_mmc4 or use_cambrian:
_kwargs["modality"] = all_modality.to(torch.int8)
data[sl] = TensorDict(
{
"input_ids": all_input_ids.to(torch.int32 if use_chameleon else torch.int16),
"attention_mask": all_attention_masks.to(torch.bool),
"idx": _idx,
"write_flag": torch.ones((bs, 1), dtype=torch.bool),
**_kwargs,
},
batch_size=[bs],
)
elif getattr(config.model, "cond_label", False):
data[sl] = TensorDict(
{
"img_input_ids": image_ids.to(torch.int16),
"img_label": batch["label"].to(torch.int32).unsqueeze(-1),
"idx": _idx,
"write_flag": torch.ones((bs, 1), dtype=torch.bool),
},
batch_size=[bs],
)
elif getattr(config.model, "unified_model", False) or getattr(config.data, "add_vggface_v2_attributes", False):
data[sl] = TensorDict(
{
"img_input_ids": image_ids.to(torch.int16),
"txt_input_ids": (batch.get("txt_input_ids") if batch.get("txt_input_ids") is not None else batch["input_ids"]).to(
torch.int32
),
"txt_attention_mask": (
batch.get("txt_attention_mask") if batch.get("txt_attention_mask") is not None else batch["attention_mask"]
).to(torch.bool),
"idx": _idx,
"write_flag": torch.ones((bs, 1), dtype=torch.bool),
},
batch_size=[bs],
)
else:
data[sl] = TensorDict(
{"input_ids": image_ids.to(torch.int32), "attention_mask": torch.ones((image_ids.shape[0], image_ids.shape[1]), dtype=torch.bool), "idx": _idx, "write_flag": torch.ones((bs, 1), dtype=torch.bool), "modality": batch["modality"].to(torch.int16)},
batch_size=[bs],
)
elif getattr(config.data, "txt_only", False):
data[sl] = TensorDict(
{"input_ids": batch['input_ids'].to(torch.int32), "attention_mask": batch['attention_mask'].to(torch.bool), "idx": _idx, "write_flag": torch.ones((bs, 1), dtype=torch.bool), "modality": batch["modality"].to(torch.int16)},
batch_size=[bs],
)
else:
real_image = batch["img"]
if (config.data.resolution == 512 and batch["img"].shape[0] > 16) or (config.model.downscale_ratio <= 8):
chunk_size = 8 if (config.model.image_vocab_size > 64000 or config.model.downscale_ratio <= 8) else 16
chunks = [batch["img"][i : i + chunk_size] for i in range(0, batch["img"].shape[0], chunk_size)]
rec_img_list = []
for chunk in chunks:
batch_chunk = {"img": chunk}
image_ids = get_image_batch(config, vae, batch_chunk, device)
rec_img = decode_latents(config, vae, image_ids)
rec_img_list.append(rec_img)
rec_img = torch.cat(rec_img_list, dim=0)
else:
image_ids = get_image_batch(config, vae, batch, device)
rec_img = decode_latents(config, vae, image_ids)
viz_img = torch.cat([real_image, rec_img], dim=-1)
from image_utils import Im
if getattr(config.model, 'custom_vae_name', None) is not None:
custom_str = getattr(config.model, 'custom_vae_name')
else:
custom_str = f"{'_custom' if getattr(config.model, 'use_custom_vae_ckpt', False) else ''}"
(Path(__file__).parent.parent.parent / "output").mkdir(parents=True, exist_ok=True)
Im(viz_img).save(
Path(__file__).parent.parent.parent / f"output/{config.data.train.replace('/', '')}_seq{image_ids.shape[1]}_res{config.data.resolution}_{config.model.vae_type}{custom_str}_voc{config.model.image_vocab_size}.png"
)
# Create directories for saving images
dataset_name = config.data.train.replace('/', '')
vae_name = f"seq{image_ids.shape[1]}_res{config.data.resolution}_{config.model.vae_type}{custom_str}_voc{config.model.image_vocab_size}"
output_dir = Path(__file__).parent.parent.parent / "output" / dataset_name / vae_name
gt_output_dir = Path(__file__).parent.parent.parent / "output" / dataset_name / f"GT_{config.data.resolution}"
output_dir.mkdir(parents=True, exist_ok=True)
gt_output_dir.mkdir(parents=True, exist_ok=True)
# Save each image separately
for i, (real, rec) in enumerate(zip(real_image, rec_img)):
print(Im(rec).save(output_dir / f"{i}.png"))
if (gt_output_dir / f"{i}.png").exists() is False:
print(Im(real).save(gt_output_dir / f"{i}.png"))
gprint(f"Exiting")
exit()
def get_dict(config, dataset_size):
if getattr(config.data, "use_chameleon", False) or config.data.train == "cambrian" or config.data.train == "mmc4":
input_ids_dtype = torch.int32 if getattr(config.data, "use_chameleon", False) else torch.int16
data = TensorDict(
{
"input_ids": torch.zeros(dataset_size, config.model.length, dtype=input_ids_dtype),
"attention_mask": torch.zeros(dataset_size, config.model.length, dtype=torch.bool),
"modality": torch.full((dataset_size, config.model.length), fill_value=-1, dtype=torch.int8),
"idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
"write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
},
batch_size=[dataset_size],
)
elif getattr(config.model, "cond_label", False):
data = TensorDict(
{
"img_input_ids": torch.zeros(dataset_size, config.model.img_length, dtype=torch.int16),
"img_label": torch.zeros(dataset_size, 1, dtype=torch.int32),
"idx": torch.full((dataset_size,), fill_value=-1, dtype=torch.int32),
"write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
},
batch_size=[dataset_size],
)
elif getattr(config.model, "unified_model", False) or getattr(config.data, "add_vggface_v2_attributes", False):
data = TensorDict(
{
"img_input_ids": torch.zeros(dataset_size, config.model.img_length, dtype=torch.int16),
"txt_input_ids": torch.zeros(dataset_size, config.model.txt_length, dtype=torch.int32),
"txt_attention_mask": torch.zeros(dataset_size, config.model.txt_length, dtype=torch.bool),
"idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
"write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
},
batch_size=[dataset_size],
)
else:
data = TensorDict(
{
"input_ids": torch.zeros(dataset_size, config.model.txt_length if config.data.txt_only else config.model.img_length, dtype=torch.int16),
"idx": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int32),
"write_flag": torch.zeros(dataset_size, 1, dtype=torch.bool),
"modality": torch.full((dataset_size, 1), fill_value=-1, dtype=torch.int16),
},
batch_size=[dataset_size],
)
return data
def signal_handler(signum, frame, train_data, tmp_path):
"""Handle signals to save temporary train data."""
rprint(f"Received signal {signum}, saving temporary train data.")
print(f"[PRINT] Received signal {signum}, saving temporary train data.")
save_tmp_data(train_data, tmp_path)
sys.exit
def save_tmp_data(data, tmp_path):
"""Save data to a temporary path."""
if tmp_path.exists() and tmp_path.is_dir():
rprint(f"Deleting {tmp_path}")
shutil.rmtree(tmp_path) # Delete old tmp directory if it exists
rprint(f"Saving tmp data to {tmp_path}")
data.memmap(tmp_path, copy_existing=True)
def periodic_save(data, tmp_path, start_time, interval=2 * 60 * 60):
"""Periodically save data to a temporary path."""
current_time = time.time()
if current_time - start_time >= interval:
rprint(f"Hit periodic save interval, saving tmp data to {tmp_path}")
save_tmp_data(data, tmp_path)
return current_time # Reset start time
return start_time
@hydra.main(version_base=None, config_path="../../configs", config_name="config")
def main(config):
"""Main entry point for training."""
try:
import resource
soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (hard_limit, hard_limit)) # Set the soft limit to the hard limit
rprint(f"Successfully set RLIMIT_NOFILE to {hard_limit}")
except Exception as e:
rprint(f"Failed to set RLIMIT_NOFILE: {e}")
mixed_precision = False
train_start_time = time.time()
from datetime import timedelta
from accelerate import Accelerator, DataLoaderConfiguration
from accelerate.utils import InitProcessGroupKwargs
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=3600))
prepare_kwargs = {}
if config.data.train == "mmc4":
prepare_kwargs["dispatch_batches"] = False
accelerator = Accelerator(mixed_precision="bf16" if mixed_precision else None, kwargs_handlers=[kwargs], dataloader_config=DataLoaderConfiguration(**prepare_kwargs))
device = torch.device(f"cuda:{accelerator.local_process_index}")
import socket
hostname = socket.gethostname()
print(f"Hostname: {hostname}, Process index: {accelerator.process_index}, {device}, local_process_index: {accelerator.local_process_index}, get_local_process_index: {get_local_rank()}, device: {device}")
_print_config(config, resolve=True, save_cfg=True)
config = get_batch_size(config)
# with omegaconf.open_dict(config):
# batch_sizes = gather_object([config.loader.batch_size])
# rprint(f"Batch sizes: {batch_sizes}")
# smallest_batch_size = min(batch_sizes)
# config.loader.batch_size = smallest_batch_size
# rprint(f"New config batch size: {config.loader.batch_size}")
prefix = f"[Rank {accelerator.process_index}/{accelerator.num_processes}, Node: {os.environ.get('SLURM_NODEID', 'N/A')}, Hostname: {os.environ.get('SLURM_JOB_NODELIST', 'N/A')}, {config.data.train}]"
print(f"{prefix} Starting precomputing tokens")
save_validation_dataloader = getattr(config.data, "save_validation_dataloader", False)
save_train_dataloader = getattr(config.data, "save_train_dataloader", False)
tokenizer = get_tokenizer(config)
train_dataloader, val_dataloader = get_dataloaders(
config, tokenizer=tokenizer, allow_aug=False, force_aug=getattr(config.data, "force_aug", False), skip_valid=not save_validation_dataloader
)
train_dataloader = accelerator.prepare(train_dataloader)
if save_validation_dataloader:
val_dataloader = accelerator.prepare(val_dataloader)
encode_images = getattr(config.model, "encode_images", False)
use_chameleon = getattr(config.data, "use_chameleon", False)
use_mmc4 = config.data.train == "mmc4"
use_cambrian = config.data.train == "cambrian"
mapping = None
if use_chameleon:
from unidisc.tokenizers.chameleon_tokenizers import ItemProcessor
vae = ItemProcessor(target_size=config.data.resolution)
else:
vae = get_vae(config, device)
if use_mmc4:
import pandas as pd
mapping = pd.read_parquet(config.data.mmc4_mapping_parquet)
# Keep tar_filepath if it exists, otherwise use shard_path or map img2dataset_shard_id
if "tar_filepath" in mapping.columns:
pass
elif "shard_path" in mapping.columns:
mapping = mapping.rename(columns={"shard_path": "tar_filepath"})
mapping["tar_filepath"] = mapping["tar_filepath"].str.replace(".parquet", ".tar")
else:
tar_path = Path(config.data.mmc4_tar_path)
mapping["tar_filepath"] = mapping["img2dataset_shard_id"].apply(lambda x: tar_path / f"{x}.tar")
mapping = mapping[['url', 'tar_filepath', 'key']]
mapping = mapping.set_index("url").sort_index()
if use_mmc4 or use_cambrian:
assert config.data.use_slow_tokenizer and config.data.add_image_token
if config.data.iterable:
train_dataset_size = getattr(config.data, "train_dataset_size", None)
else:
print(f"{prefix} Train dataloader: {len(train_dataloader)} batches")
print(f"{prefix} Train underlying dataset: {len(train_dataloader.dataset)} samples")
train_dataset_size = (len(train_dataloader.dataset) // accelerator.num_processes) + config.loader.batch_size
if save_validation_dataloader:
print(f"{prefix} Val dataloader: {len(val_dataloader)} batches")
print(f"Val underlying dataset: {len(val_dataloader.dataset)} samples")
val_dataset_size = (len(val_dataloader.dataset) // accelerator.num_processes) + config.loader.batch_size
print(f"{prefix} Train dataset size: {train_dataset_size} for 1 GPU")
if save_validation_dataloader:
print(f"{prefix} Val dataset size: {val_dataset_size} for 1 GPU")
rank = accelerator.process_index
output_dir = config.data.token_output_dir
output_dir = Path(f"{output_dir}")
output_dir.mkdir(parents=True, exist_ok=True)
assert config.data.force_disable_shuffle
debug = getattr(config.data, "debug", False)
print(f"{prefix} Output dir: {output_dir}")
vgg_data = None
if getattr(config.data, "add_vggface_v2_attributes", False):
print(f"{prefix} Adding VGGFace V2 attributes")
vgg_data = get_inference_func()
vgg_data["model"] = accelerator.prepare(vgg_data["model"])
if not config.data.split_dataset and is_main_process() and any(output_dir.iterdir()):
rprint(f"Found temporary directories in output dir, combining them")
combine_token_dicts(output_dir, use_tmp=False, use_timestamp=True, delete_after_combining=True)
for item in output_dir.iterdir():
if item.is_dir() and "tmp" in item.name:
rprint(f"Removing temporary directory: {item}")
shutil.rmtree(item)
# barrier() # TODO: Should be a barrier here
if not config.data.split_dataset:
existing_folders = sorted([folder for folder in output_dir.iterdir() if folder.is_dir() and "existing" in folder.name])
if existing_folders:
rprint(f"Found existing folders: {existing_folders}")
existing_data = torch.cat([TensorDict.load_memmap(folder) for folder in existing_folders], dim=0)
rprint(f"Concatenated existing data with shape: {existing_data.shape}")
existing_ids = set(existing_data["idx"].to(torch.int32).flatten().tolist())
else:
rprint("No existing folders found")
existing_ids = None
else:
existing_ids = None
if save_train_dataloader:
if not config.data.split_dataset and getattr(config.data, "allow_load_from_tmp", True) and Path(output_dir / f"tmp_train_{rank}").exists():
rprint("Found tmp_train_{rank} in output dir, loading from it")
train_data = TensorDict.load_memmap(output_dir / f"tmp_train_{rank}")
train_data = train_data.clone()
else:
train_data = get_dict(config, train_dataset_size)
print(f"{prefix} Starting train dataloader")
if config.data.split_dataset:
rank = int(os.getenv("SLURM_ARRAY_TASK_ID"))
print(f"Using task id: {rank}")
split_path = output_dir / f"train_{rank}"
tmp_train_path = output_dir / f"tmp_train_{rank}"
signal.signal(signal.SIGUSR1, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))
signal.signal(signal.SIGUSR2, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))
try:
signal.signal(signal.SIGKILL, partial(signal_handler, train_data=train_data, tmp_path=tmp_train_path))
except:
rprint(f"Failed to set SIGKILL handler")
start_time = time.time()
with VizTracer(output_file="optional.json", tracer_entries=5000000) if debug else nullcontext():
for i, batch in tqdm(enumerate(train_dataloader), leave=False, disable=not is_local_main_process()):
if i == 0 and "img" in batch:
print(f"Batch shape: {batch['img'].shape}")
if debug and i >= 1:
break
enc(train_data, i, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data=vgg_data, existing_ids=existing_ids, device=device, mapping=mapping)
try:
if not config.data.split_dataset or True:
start_time = periodic_save(train_data, tmp_train_path, start_time, getattr(config.data, "periodic_save", 2 * 60 * 60))
except Exception as e:
gprint(f"Failed to save train data: {e}")
start_time = time.time()
if debug:
exit()
del train_dataloader
print(f"{prefix} Saving train data")
if split_path.exists() and split_path.is_dir():
rprint(f"Removing {split_path}")
shutil.rmtree(split_path)
split_path.mkdir(parents=True, exist_ok=True)
gprint(f"Saving train data to {split_path}: {train_data.shape}")
train_data.memmap(split_path, copy_existing=True)
if tmp_train_path.exists() and tmp_train_path.is_dir():
rprint(f"Removing {tmp_train_path}")
shutil.rmtree(tmp_train_path)
if not config.data.split_dataset:
with open(output_dir / f"train_{rank}.completed", 'w') as f:
f.write(f"Processing done for rank {rank}\n")
print(f"{prefix} Finished train dataloader")
if save_validation_dataloader:
val_data = get_dict(config, val_dataset_size)
split_path = output_dir / f"val_{rank}"
split_path.mkdir(parents=True, exist_ok=True)
tmp_val_path = output_dir / f"tmp_val_{rank}"
print(f"Starting val dataloader")
start_time = time.time() # Track start time for periodic saving
for i, batch in tqdm(enumerate(val_dataloader), leave=False):
if debug and i >= 10:
break
enc(val_data, i, encode_images, config, vae, batch, accelerator, mixed_precision, tokenizer, vgg_data=vgg_data, device=device)
# Periodically save data
start_time = periodic_save(val_data, tmp_val_path, start_time)
print(f"{prefix} Saving val data")
if split_path.exists() and split_path.is_dir():
rprint(f"Removing {split_path}")
shutil.rmtree(split_path)
split_path.mkdir(parents=True, exist_ok=True)
rprint(f"Saving val data to {split_path}")
val_data.memmap(split_path, copy_existing=True)
if tmp_val_path.exists() and tmp_val_path.is_dir():
shutil.rmtree(tmp_val_path) # Delete tmp directory after final save
print(f"{prefix} Finished val dataloader")
rprint(f"{prefix} Finished precomputing tokens")
if config.data.split_dataset:
rprint(f"We are splitting the dataset and thus exiting.")
exit()
if get_world_size() > 1 and (time.time() - train_start_time) > 60 * 60:
time.sleep(60 * 60)
barrier()
rprint('after barrier')
if is_main_process():
combine_token_dicts(data_dir=output_dir, allow_zero_idx=True, move_files=True, delete_after_combining=True)
barrier()
rprint(f"Finished concating tokens")
if __name__ == "__main__":
with breakpoint_on_error():
main()
|