File size: 13,153 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from collections import defaultdict
from io import BytesIO # Added import for BytesIO
import torch
import torch.utils.data as data
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.transforms.functional as F
import os
import sys
import numpy as np
import pandas as pd
from PIL import Image
import numpy.random as random
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
#from pycocotools.coco import COCO
from skimage import io
import matplotlib.pyplot as plt
from matplotlib import cm
import nltk, sklearn
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
def prepare_data(data):
imgs, captions, captions_lens, class_ids, keys, wrong_caps, \
wrong_caps_len, wrong_cls_id, noise, word_labels = data
# sort data by the length in a decreasing order
sorted_cap_lens, sorted_cap_indices = \
torch.sort(captions_lens, 0, True)
real_imgs = []
for i in range(len(imgs)):
imgs[i] = imgs[i][sorted_cap_indices]
if False:
real_imgs.append(Variable(imgs[i]).cuda())
else:
real_imgs.append(Variable(imgs[i]))
noise = noise[sorted_cap_indices]
word_labels = word_labels[sorted_cap_indices]
captions = captions[sorted_cap_indices].squeeze()
class_ids = class_ids[sorted_cap_indices].numpy()
keys = [keys[i] for i in sorted_cap_indices.numpy()]
if False:
captions = Variable(captions).cuda()
sorted_cap_lens = Variable(sorted_cap_lens).cuda()
else:
captions = Variable(captions)
sorted_cap_lens = Variable(sorted_cap_lens)
w_sorted_cap_lens, w_sorted_cap_indices = \
torch.sort(wrong_caps_len, 0, True)
wrong_caps = wrong_caps[w_sorted_cap_indices].squeeze()
wrong_cls_id = wrong_cls_id[w_sorted_cap_indices].numpy()
if False:
wrong_caps = Variable(wrong_caps).cuda()
w_sorted_cap_lens = Variable(w_sorted_cap_lens).cuda()
else:
wrong_caps = Variable(wrong_caps)
w_sorted_cap_lens = Variable(w_sorted_cap_lens)
##
return [real_imgs, captions, sorted_cap_lens,
class_ids, keys, wrong_caps, w_sorted_cap_lens, wrong_cls_id, noise, word_labels]
def get_imgs(img_path, bbox, imsize, do_augment=False, image_cache=None):
"""
Load image with caching of raw bytes to improve performance on repeated accesses.
Raw bytes are cached before any transformations like cropping to maintain compression.
"""
if image_cache is None: image_cache = {}
if img_path in image_cache:
raw_bytes = image_cache[img_path]
else:
with open(img_path, 'rb') as f:
raw_bytes = f.read()
image_cache[img_path] = raw_bytes
img = Image.open(BytesIO(raw_bytes)).convert('RGB')
width, height = img.size
if bbox is not None:
r = int(np.maximum(bbox[2], bbox[3]) * 0.75)
center_x = int((2 * bbox[0] + bbox[2]) / 2)
center_y = int((2 * bbox[1] + bbox[3]) / 2)
y1 = np.maximum(0, center_y - r)
y2 = np.minimum(height, center_y + r)
x1 = np.maximum(0, center_x - r)
x2 = np.minimum(width, center_x + r)
img = img.crop([x1, y1, x2, y2])
w, h = img.size
if do_augment:
if random.random() < 0.5:
img = F.hflip(img)
crop_side = random.randint(int(min(w, h) * 0.7), int(min(w, h) * 1.0))
left = random.randint(0, w - crop_side)
top = random.randint(0, h - crop_side)
img = F.crop(img, top, left, crop_side, crop_side)
img = F.resize(img, (imsize, imsize), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True)
else:
# if w != h:
# min_side = min(w, h)
# left = (w - min_side) // 2
# top = (h - min_side) // 2
# img = F.crop(img, top, left, min_side, min_side)
crop_side = int(min(w, h) * 0.9)
left = random.randint(0, w - crop_side)
top = random.randint(0, h - crop_side)
img = F.crop(img, top, left, crop_side, crop_side)
img = F.resize(img, (imsize, imsize), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True)
return img
class TextDataset(data.Dataset):
def __init__(self, data_dir, split='train'):
self.transform = None
self.norm = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
self.target_transform = None
self.embeddings_num = 10
self.imsize = 256
self.data = []
self.data_dir = data_dir
if data_dir.find('birds') != -1:
self.bbox = self.load_bbox()
else:
self.bbox = None
split_dir = os.path.join(data_dir, split)
self.split = split
self.filenames, self.captions, self.ixtoword, self.wordtoix, self.n_words = self.load_text_data(data_dir, split)
self.class_id = self.load_class_id(split_dir, len(self.filenames))
self.number_example = len(self.filenames)
self.image_cache = {}
print(f"CUB200 {split} dataset loaded with {len(self)} examples")
def load_bbox(self):
data_dir = self.data_dir
bbox_path = os.path.join(data_dir, 'CUB_200_2011/bounding_boxes.txt')
df_bounding_boxes = pd.read_csv(bbox_path,
delim_whitespace=True,
header=None).astype(int)
#
filepath = os.path.join(data_dir, 'CUB_200_2011/images.txt')
df_filenames = \
pd.read_csv(filepath, delim_whitespace=True, header=None)
filenames = df_filenames[1].tolist()
print('Total filenames: ', len(filenames), filenames[0])
#
filename_bbox = {img_file[:-4]: [] for img_file in filenames}
numImgs = len(filenames)
for i in range(0, numImgs):
bbox = df_bounding_boxes.iloc[i][1:].tolist()
key = filenames[i][:-4]
filename_bbox[key] = bbox
#
return filename_bbox
def load_captions(self, data_dir, filenames):
all_captions = []
for i in range(len(filenames)):
cap_path = '%s/text/%s.txt' % (data_dir, filenames[i])
with open(cap_path, "r") as f:
captions = f.read().split('\n')
cnt = 0
for cap in captions:
if len(cap) == 0:
continue
cap = cap.replace("\ufffd\ufffd", " ")
# picks out sequences of alphanumeric characters as tokens
# and drops everything else
from nltk.tokenize import RegexpTokenizer
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(cap.lower())
if len(tokens) == 0:
print('cap', cap)
continue
tokens_new = []
for t in tokens:
t = t.encode('ascii', 'ignore').decode('ascii')
if len(t) > 0:
tokens_new.append(t)
all_captions.append(tokens_new)
cnt += 1
if cnt == self.embeddings_num:
break
if cnt < self.embeddings_num:
print('ERROR: the captions for %s less than %d'
% (filenames[i], cnt))
return all_captions
def build_dictionary(self, train_captions, test_captions):
word_counts = defaultdict(float)
captions = train_captions + test_captions
for sent in captions:
for word in sent:
word_counts[word] += 1
vocab = [w for w in word_counts if word_counts[w] >= 0]
ixtoword = {}
ixtoword[0] = '<end>'
wordtoix = {}
wordtoix['<end>'] = 0
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
train_captions_new = []
for t in train_captions:
rev = []
for w in t:
if w in wordtoix:
rev.append(wordtoix[w])
# rev.append(0) # do not need '<end>' token
# this train_captions_new hold index of each word in sentence
train_captions_new.append(rev)
test_captions_new = []
for t in test_captions:
rev = []
for w in t:
if w in wordtoix:
rev.append(wordtoix[w])
# rev.append(0) # do not need '<end>' token
test_captions_new.append(rev)
return [train_captions_new, test_captions_new, ixtoword, wordtoix, len(ixtoword)]
def load_text_data(self, data_dir, split):
filepath = os.path.join(data_dir, 'captions.pickle')
train_names = self.load_filenames(data_dir, 'train')
test_names = self.load_filenames(data_dir, 'test')
if not os.path.isfile(filepath):
train_captions = self.load_captions(data_dir, train_names)
test_captions = self.load_captions(data_dir, test_names)
train_captions, test_captions, ixtoword, wordtoix, n_words = self.build_dictionary(train_captions, test_captions)
with open(filepath, 'wb') as f:
pickle.dump([train_captions, test_captions,
ixtoword, wordtoix], f, protocol=2)
print('Save to: ', filepath)
else:
with open(filepath, 'rb') as f:
print("filepath", filepath)
x = pickle.load(f)
train_captions, test_captions = x[0], x[1]
ixtoword, wordtoix = x[2], x[3]
del x
n_words = len(ixtoword)
print(f'Loaded from: {filepath}, Vocab size: {n_words}')
if split == 'train':
# a list of list: each list contains
# the indices of words in a sentence
captions = train_captions
filenames = train_names
else: # split=='test'
captions = test_captions
filenames = test_names
return filenames, captions, ixtoword, wordtoix, n_words
def load_class_id(self, data_dir, total_num):
if os.path.isfile(data_dir + '/class_info.pickle'):
with open(data_dir + '/class_info.pickle', 'rb') as f:
class_id = pickle.load(f, encoding='latin1')
else:
class_id = np.arange(total_num)
return class_id
def load_filenames(self, data_dir, split):
filepath = '%s/%s/filenames.pickle' % (data_dir, split)
if os.path.isfile(filepath):
with open(filepath, 'rb') as f:
filenames = pickle.load(f)
print('Load filenames from: %s (%d)' % (filepath, len(filenames)))
else:
filenames = []
return filenames
def get_caption(self, sent_ix):
# a list of indices for a sentence
sent_caption = np.asarray(self.captions[sent_ix]).astype('int64')
if (sent_caption == 0).sum() > 0:
print('ERROR: do not need END (0) token', sent_caption)
num_words = len(sent_caption)
# pad with 0s (i.e., '<end>')
x = np.zeros((18, 1), dtype='int64')
x_len = num_words
if num_words <= 18:
x[:num_words, 0] = sent_caption
else:
ix = list(np.arange(num_words))
np.random.shuffle(ix)
ix = ix[:18]
ix = np.sort(ix)
x[:, 0] = sent_caption[ix]
x_len = 18
return x, x_len
def __getitem__(self, global_index):
index = global_index // self.embeddings_num
key = self.filenames[index]
cls_id = self.class_id[index]
# print(f"glindex: {global_index}, index: {index}, key: {key}, cls_id: {cls_id}")
if self.bbox is not None:
bbox = self.bbox[key]
data_dir = '%s/CUB_200_2011' % self.data_dir
else:
bbox = None
data_dir = self.data_dir
img_name = f'{data_dir}/images/{key}.jpg'
imgs = get_imgs(img_name, bbox=None, imsize=self.imsize, do_augment=self.split == 'train', image_cache=self.image_cache)
imgs = np.array(imgs) / 255.0
imgs = imgs.transpose(2, 0, 1)
# sent_ix = random.randint(0, self.embeddings_num)
# new_sent_ix = index * self.embeddings_num + sent_ix
new_sent_ix = global_index
caps, cap_len = self.get_caption(new_sent_ix)
return {
"img": imgs,
"input_ids": torch.from_numpy(caps).squeeze(-1),
"attention_mask": torch.ones((caps.shape[0],), dtype=torch.bool)
}
def __len__(self):
return len(self.filenames) * self.embeddings_num |