File size: 13,708 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import base64
import io
import json
import shutil
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import numpy as np
import requests
import typer
from PIL import Image
from tqdm import tqdm
from image_utils import Im
typer.main.get_command_name = lambda name: name
app = typer.Typer(pretty_exceptions_show_locals=False)
def square_crop(image: Image.Image) -> Image.Image:
"""Crop the image to a square (centered)."""
width, height = image.size
side = min(width, height)
left = (width - side) // 2
top = (height - side) // 2
right = left + side
bottom = top + side
return image.crop((left, top, right, bottom))
def process(image: Image.Image, desired_resolution: int = 512) -> Image.Image:
"""Square-crop and resize the image."""
cropped_image = square_crop(image.convert("RGB"))
return cropped_image.resize((desired_resolution, desired_resolution), Image.LANCZOS)
def encode_image(file: Path | io.BytesIO | Image.Image) -> dict:
"""Encode an image as base64 data in a dict of the form {'url': 'data:image/jpeg;base64,...'}."""
if isinstance(file, Image.Image):
buffered = io.BytesIO()
file.save(buffered, format="JPEG")
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
elif isinstance(file, Path):
with file.open("rb") as img_file:
base64_str = base64.b64encode(img_file.read()).decode("utf-8")
else:
base64_str = base64.b64encode(file.getvalue()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
def encode_array_image(array: np.ndarray) -> dict:
"""Encode a mask array as base64 data in a dict of the form {'url': 'data:image/jpeg;base64,...'}."""
if array.dtype == bool:
array = array.astype(np.uint8) * 255
im = Image.fromarray(array)
buffered = io.BytesIO()
im.save(buffered, format="JPEG", quality=95)
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
def call_unidisc_api(
image_path: Path | None,
caption: str | None,
mask_path: Path | None,
cfg: dict,
) -> list:
"""
Build the payload and call the UniDisc API, returning a list of
output pieces. Each piece is a dict with either:
{"type": "text", "text": "..."}
or {"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,..."}}
"""
# Prepare message content as in reference code
messages = []
if caption:
messages.append({"type": "text", "text": caption})
if image_path and image_path.exists():
resolution = int(cfg.get("resolution", 512))
current_image = process(Image.open(image_path), resolution)
img_data = encode_image(current_image)["url"]
messages.append({
"type": "image_url",
"image_url": {"url": img_data},
"is_mask": False
})
if mask_path and mask_path.exists():
mask_array = np.array(Image.open(mask_path))
mask_data_url = encode_array_image(mask_array)["url"]
messages.append({
"type": "image_url",
"image_url": {"url": mask_data_url},
"is_mask": True
})
config_payload = {
"max_tokens": int(cfg.get("max_tokens", 32)),
"resolution": int(cfg.get("resolution", 512)),
"sampling_steps": int(cfg.get("sampling_steps", 32)),
"top_p": float(cfg.get("top_p", 0.95)),
"temperature": float(cfg.get("temperature", 0.9)),
"maskgit_r_temp": float(cfg.get("maskgit_r_temp", 4.5)),
"cfg": float(cfg.get("cfg", 2.5)),
"sampler": cfg.get("sampler", "maskgit_nucleus"),
"use_reward_models": bool(cfg.get("use_reward_models", False)),
}
port = cfg.get('port', 8001)
hostname = f"{port}" if ":" in port else f"localhost:{port}"
payload = {
"messages": [{"role": "user", "content": messages}],
"model": "unidisc",
**config_payload
}
api_url = f"http://{hostname}/v1/chat/completions"
response = requests.post(api_url, json=payload)
if response.status_code != 200:
return [{"type": "text", "text": f"API Error: {response.text}", "error": True}]
response_json = response.json()
if "choices" not in response_json:
return [{"type": "text", "text": f"Malformed response: {response.text}", "error": True}]
# The reference code expects "content" to be a list with items typed "text" or "image_url"
content = response_json["choices"][0]["message"]["content"]
if isinstance(content, list):
return content
else:
# If it's not a list, wrap it
return [{"type": "text", "text": content}]
def decode_image_base64(url_str: str) -> Image.Image:
"""Given a 'data:image/...;base64,...' string, return the PIL.Image."""
# e.g. "..."
base64_part = url_str.split("base64,")[-1]
raw = base64.b64decode(base64_part)
return Image.open(io.BytesIO(raw))
def run_inference_for_folder(
folder: Path,
output_folder: Path,
cfg: dict,
use_image: bool,
use_img_mask: bool,
use_caption: bool,
use_cap_mask: bool,
):
"""
For a single folder with an image, caption, and mask, call the API,
then write out the returned content (images/text).
"""
image_file = None
caption_file = None
mask_file = None
for f in folder.iterdir():
name_lower = f.name.lower()
if name_lower.startswith("image") and f.suffix.lower() in [".jpg", ".jpeg", ".png"]:
image_file = f
if name_lower.startswith("mask") and f.suffix.lower() == ".png":
mask_file = f
if name_lower.startswith("caption") and f.suffix.lower() in [".txt"]:
caption_file = f
if name_lower.startswith("mask_caption") and f.suffix.lower() == ".txt":
mask_caption_file = f
results = call_unidisc_api(
image_path=image_file if use_image else None,
caption=mask_caption_file.read_text().strip() if (mask_caption_file and use_cap_mask) else (caption_file.read_text().strip() if (caption_file and use_caption) else None),
mask_path=mask_file if use_img_mask else None,
cfg=cfg,
)
output_folder.mkdir(parents=True, exist_ok=True)
text_parts = []
img_count = 0
for i, item in enumerate(results):
if item["type"] == "text":
text_parts.append(item["text"])
elif item["type"] == "image_url":
out_img = decode_image_base64(item["image_url"]["url"])
out_img_name = output_folder / f"image.png"
out_img.save(out_img_name)
img_count += 1
if "error" in item:
text_parts.append(item["text"])
cfg['mode'] = f"{'img_' if use_image else ''}{'imgmask_' if use_img_mask else ''}{'cap_' if use_caption else ''}{'capmask_' if use_cap_mask else ''}"
cfg['use_image'] = use_image
cfg['use_img_mask'] = use_img_mask
cfg['use_caption'] = use_caption
cfg['use_cap_mask'] = use_cap_mask
if len(text_parts) > 0:
out_txt = output_folder / "caption.txt"
out_txt.write_text("\n".join(text_parts))
else:
shutil.copy(caption_file, output_folder / "caption.txt")
print(f"No text found, copied input caption to output: mode={cfg['mode']}")
if img_count == 0:
shutil.copy(image_file, output_folder / "image.png")
print(f"No image found, copied input image to output: mode={cfg['mode']}")
config_file = output_folder / "config.json"
config_file.write_text(json.dumps(cfg, indent=2))
input_img = (mask_file if use_img_mask else (image_file if use_image else None))
input_txt = (mask_caption_file if use_cap_mask else (caption_file if use_caption else None))
input_img = Im(input_img) if input_img else Im.new(h=512, w=512)
input_txt = input_txt.read_text().strip() if input_txt else "Empty caption"
input_img.save(output_folder / "input_image.png")
(output_folder / "input_caption.txt").write_text(input_txt)
@app.command()
def main(
input_dir: Path | None = None,
output_dir: Path | None = None,
param_file: Path | None = None,
num_pairs: int | None = None,
num_workers: int = 32,
batch_sleep: float = 0.2,
use_image: bool = False,
use_img_mask: bool = False,
use_caption: bool = False,
use_cap_mask: bool = False,
iterate_over_modes: bool = False,
single_config: bool = False,
):
"""
Generate datasets by calling the UniDisc API on each (image, caption, mask) triplet in input_dir.
Modified version:
- Queues tasks in order on a single global ThreadPoolExecutor.
- After queueing each batch, sleeps for a bit.
- Does not wait indefinitely for a batch to finish before moving on.
"""
if use_img_mask:
assert use_image
if input_dir is None or output_dir is None:
raise ValueError("Both input_dir and output_dir must be provided.")
if param_file is not None:
all_configs = json.loads(param_file.read_text())
if not isinstance(all_configs, list):
raise ValueError("param_file must contain a JSON list of configs.")
else:
all_configs = []
for cfg in [2.5]:
# for sampler in ["maskgit_nucleus", "maskgit"]:
for port in ["babel-10-9:8000", "babel-6-29:8001"]:
all_configs.append(dict(port=port, cfg=cfg))
if single_config:
all_configs = [{'port': 'localhost:8000', 'cfg': 2.5}]
subfolders = sorted([f for f in input_dir.iterdir() if f.is_dir()])
if num_pairs is not None:
subfolders = subfolders[:num_pairs]
configs = []
from decoupled_utils import sanitize_filename
for i, cfg in enumerate(all_configs):
# Build config name from key/values if not explicitly provided
if "name" not in cfg:
# Sanitize values and join with underscores
cfg_name = "_".join(
f"{k}={str(v).replace('/', '_').replace(' ', '_')}"
for k, v in sorted(cfg.items())
)
else:
cfg_name = cfg["name"]
cfg_output_dir = output_dir / sanitize_filename(cfg_name)
cfg_output_dir.mkdir(parents=True, exist_ok=True)
configs.append((cfg, cfg_name, cfg_output_dir))
# Compute the batch size so each config receives a fair share of workers per batch.
# E.g., if num_workers=10 and there are 2 configs then each config gets ~5 workers in a batch.
batch_size = max(1, num_workers // len(configs))
total_folders = len(subfolders)
print(f"Processing {total_folders} folders across {len(configs)} configs with batch size {batch_size} per config.")
modes = []
if iterate_over_modes:
modes.append(dict(use_image=False, use_img_mask=False, use_caption=True, use_cap_mask=False)) # T2I
modes.append(dict(use_image=True, use_img_mask=False, use_caption=False, use_cap_mask=False)) # I2T
modes.append(dict(use_image=True, use_img_mask=True, use_caption=True, use_cap_mask=True)) # Both masked
modes.append(dict(use_image=True, use_img_mask=False, use_caption=True, use_cap_mask=True))
modes.append(dict(use_image=False, use_img_mask=False, use_caption=True, use_cap_mask=False))
else:
modes.append(dict(use_image=use_image, use_img_mask=use_img_mask, use_caption=use_caption, use_cap_mask=use_cap_mask))
# Use a single, global ThreadPoolExecutor so we can submit tasks in order
futures = []
with ThreadPoolExecutor(max_workers=num_workers) as executor:
for batch_start in range(0, total_folders, batch_size):
batch_folders = subfolders[batch_start : batch_start + batch_size]
for cfg, cfg_name, cfg_out in configs:
for folder in batch_folders:
for mode in modes:
use_image = mode['use_image']
use_img_mask = mode['use_img_mask']
use_caption = mode['use_caption']
use_cap_mask = mode['use_cap_mask']
key = ""
if use_img_mask:
key += "imgmask_"
elif use_image:
key += "img_"
if use_cap_mask:
key += "capmask_"
elif use_caption:
key += "cap_"
key = key.removesuffix('_')
folder_output = cfg_out / f"{key}__{folder.name}"
futures.append(
executor.submit(
run_inference_for_folder,
folder=folder,
output_folder=folder_output,
cfg=cfg,
use_image=use_image,
use_img_mask=use_img_mask,
use_caption=use_caption,
use_cap_mask=use_cap_mask,
)
)
print(f"Queued batch {batch_start} to {batch_start + len(batch_folders)}. Sleeping for {batch_sleep} seconds...")
time.sleep(batch_sleep)
for future in tqdm(as_completed(futures), total=len(futures), desc=f"Processing folders..."):
future.result()
print("All processing complete.")
if __name__ == "__main__":
app() |