File size: 12,548 Bytes
131da64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import time
import gradio as gr
import requests
import asyncio
from pathlib import Path
import base64
from PIL import Image
import numpy as np
from typing import List, Dict, Any
import io
import uuid
from demo.server import ChatRequest, ChatMessage, ContentPart
API_URL = "http://localhost:8000/v1/chat/completions"
# Encode a file on disk as a base64 data URL.
def encode_image(file_path: Path) -> Dict[str, str]:
with file_path.open("rb") as img_file:
base64_str = base64.b64encode(img_file.read()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
# Convert a numpy array (or a PIL image) to a base64-encoded JPEG data URL.
def encode_array_image(array: np.ndarray) -> Dict[str, str]:
im = Image.fromarray(array) if isinstance(array, np.ndarray) else array
buffered = io.BytesIO()
im.save(buffered, format="JPEG")
base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"url": f"data:image/jpeg;base64,{base64_str}"}
def decode_image(img_data: str) -> Image:
base64_data = img_data.split("base64,")[1]
image_bytes = base64.b64decode(base64_data)
return Image.open(io.BytesIO(image_bytes))
# Helper: compute a boolean mask from the image editor data.
def get_boolean_mask(image_data):
if image_data is None:
return None
layers = image_data.get("layers", [])
if not layers:
bg = image_data.get("background")
if bg is not None:
height, width = bg.shape[:2]
return np.zeros((height, width), dtype=np.uint8)
return None
mask_layer = layers[0]
if mask_layer.shape[-1] == 4:
colored = mask_layer[..., 3] > 0
return (colored.astype(np.uint8) * 255), image_data["composite"]
else:
colored = mask_layer > 0
return (colored.astype(np.uint8) * 255), image_data["composite"]
# Convert the stored content into a list of ContentPart objects.
def convert_to_content_parts(raw: Any) -> List[ContentPart]:
if isinstance(raw, str):
return [ContentPart(type="text", text=raw)]
elif isinstance(raw, list):
parts = []
for item in raw:
if isinstance(item, dict):
parts.append(ContentPart(**item))
else:
raise ValueError(f"Unexpected list element type: {type(item)}")
return parts
elif isinstance(raw, tuple):
return [ContentPart(type="image_url", image_url=encode_image(Path(raw[0])))]
elif isinstance(raw, dict):
_content = raw.value if isinstance(raw, gr.Image) else raw
if "path" in _content:
return [ContentPart(type="image_url", image_url=encode_image(Path(_content["path"])))]
else:
raise ValueError(f"Expected 'path' in content dict, got: {_content}")
else:
raise ValueError(f"Unexpected content type: {type(raw)}")
def add_user_msg_to_history(history: List[Dict[str, Any]], message: Dict[str, Any]) -> List[Dict[str, Any]]:
for file_path in message.get("files", []):
history.append({"role": "user", "content": {"path": file_path}})
if text := message.get("text"):
history.append({"role": "user", "content": text})
return history
def add_assistant_msg_to_history(history: List[Dict[str, Any]], content: List[Any]) -> List[Dict[str, Any]]:
for item in content:
if isinstance(item, str):
history.append({"role": "assistant", "content": item})
elif isinstance(item, tuple):
img_data, _ = item
if isinstance(img_data, str) and img_data.startswith("data:image"):
image = decode_image(img_data)
else:
image = img_data
history.append({"role": "assistant", "content": gr.Image(value=image)})
return history
def build_chat_request(
history: List[Dict[str, Any]],
message: Dict[str, Any],
model: str = "unidisc",
max_tokens: int = 1024,
temperature: float = 0.9,
top_p: float = 0.95,
resolution: int = 256,
sampling_steps: int = 35,
maskgit_r_temp: float = 4.5,
cfg: float = 3.5,
sampler: str = "maskgit"
) -> ChatRequest:
messages = [ChatMessage(role=entry["role"], content=convert_to_content_parts(entry["content"])) for entry in history]
if "mask" in message and message.get("files"):
messages[-1].content.append(ContentPart(type="image_url", image_url=encode_array_image(message["mask"]), is_mask=True))
return ChatRequest(
messages=messages,
model=model,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
resolution=resolution,
sampling_steps=sampling_steps,
maskgit_r_temp=maskgit_r_temp,
cfg=cfg,
sampler=sampler
)
async def send_request(payload: Dict[str, Any]) -> Dict[str, Any]:
response = await asyncio.to_thread(lambda: requests.post(API_URL, json=payload))
response.raise_for_status()
return response.json()
def process_response(response: Dict[str, Any]) -> str | List[Any]:
choices = response.get("choices", [])
if not choices:
return ""
message = choices[0].get("message", {})
content = message.get("content", [])
if isinstance(content, str):
return content
result = []
for part in content:
if part.get("type") == "text":
result.append(part.get("text", ""))
elif part.get("type") == "image_url":
img_data = part.get("image_url", {}).get("url", "")
if img_data.startswith("data:image"):
result.append((img_data, "image"))
return ["\n".join(result)] if all(isinstance(item, str) for item in result) else result
def save_composite_image(composite: np.ndarray, file_path: str) -> str:
image = Image.fromarray(composite.astype('uint8'), 'RGBA')
image.save(file_path)
return file_path
def overwrite_input_img(history: List[Dict[str, Any]], message: Dict[str, Any]) -> List[Dict[str, Any]]:
if 'composite' in message:
composite_image_path = save_composite_image(message['composite'], f'/tmp/gradio/{uuid.uuid4()}.png')
for entry in reversed(history):
if not isinstance(entry['content'], str):
entry['content'] = gr.Image(value=composite_image_path)
return history
return history
async def bot(
history: List[Dict[str, Any]],
message: Dict[str, Any],
max_tokens: int,
resolution: int,
sampling_steps: int,
top_p: float,
temperature: float,
maskgit_r_temp: float,
cfg: float,
sampler: str
):
history = add_user_msg_to_history(history, message)
chat_request = build_chat_request(
history,
message,
max_tokens=int(max_tokens),
resolution=int(resolution),
sampling_steps=int(sampling_steps),
top_p=float(top_p),
temperature=float(temperature),
maskgit_r_temp=float(maskgit_r_temp),
cfg=float(cfg),
sampler=str(sampler)
)
do_overwrite_input_img = True
payload = chat_request.model_dump()
if do_overwrite_input_img:
history = overwrite_input_img(history, message)
try:
response = await send_request(payload)
content = process_response(response)
history = add_assistant_msg_to_history(history, content)
except requests.HTTPError as e:
history.append({"role": "assistant", "content": f"Error: {e}"})
return history, gr.update(value=None, interactive=True)
async def handle_submit(history, message, mask_editor, max_tokens, resolution, sampling_steps, top_p, temperature, maskgit_r_temp, cfg, sampler):
if mask_editor is not None:
mask, composite = get_boolean_mask(mask_editor)
if mask is not None and mask.sum() > 0:
message["mask"] = mask
message["composite"] = composite
history_out, chat_input_update = await bot(history, message, max_tokens, resolution, sampling_steps, top_p, temperature, maskgit_r_temp, cfg, sampler)
return history_out, chat_input_update, gr.update(value=None), 0
def square_crop(image: Image.Image) -> Image.Image:
width, height = image.size
side = min(width, height)
left = (width - side) // 2
top = (height - side) // 2
right = left + side
bottom = top + side
return image.crop((left, top, right, bottom))
def update_image_editor(chat_input_value, image_editor_value, num_editor_updates, desired_resolution: int = 256):
print(f"num_editor_updates: {num_editor_updates}, chat_input_value: {chat_input_value}")
files = chat_input_value.get("files", [])
if len(files) == 0:
print(f"len files 0 returning image_editor_value, new num_editor_updates: {0}")
return image_editor_value, 0
# For some reason when you upload a file, this is called twice. We want to prevent further updates to avoid resetting masking while e.g., typing.
if num_editor_updates >= 2:
print(f"returning image_editor_value, new num_editor_updates: {num_editor_updates}")
return image_editor_value, num_editor_updates
file_path = files[0]
image = Image.open(file_path)
cropped_image = square_crop(image)
if desired_resolution > 0:
cropped_image = cropped_image.resize(
(int(desired_resolution), int(desired_resolution)), Image.LANCZOS
)
if (len(chat_input_value['text']) > 0 and num_editor_updates >= 0):
print(f"setting background,new num_editor_updates: {num_editor_updates + 1}")
image_editor_value["background"] = cropped_image
return image_editor_value, num_editor_updates + 1
else:
print(f"returning cropped_image, new num_editor_updates: {num_editor_updates + 1}")
return cropped_image, num_editor_updates + 1
demo_examples = [
{"text": "This is a<mask><mask><mask><mask><mask>", "files": [str(Path("demo/assets/dog.jpg").resolve())]},
]
with gr.Blocks() as demo:
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
type="messages",
render_markdown=False,
)
with gr.Row():
with gr.Column(scale=2):
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter message or upload file...",
show_label=False,
sources=["upload"],
)
with gr.Column(scale=1):
image_editor = gr.ImageMask(
label="Mask the image",
brush=gr.Brush(default_size=64, colors=["#000000"], color_mode='fixed')
)
gr.Examples(
examples=demo_examples,
inputs=chat_input,
label="Try these examples"
)
with gr.Row():
max_tokens_input = gr.Number(value=32, label="Tokens to Generate", precision=0)
resolution_input = gr.Number(value=256, label="Resolution", precision=0)
sampling_steps_input = gr.Number(value=32, label="Sampling Steps", precision=0)
with gr.Row():
top_p_input = gr.Number(value=0.95, label="Top P [maskgit_nucleus only]", precision=2)
temperature_input = gr.Number(value=0.9, label="Temperature [maskgit_nucleus only]", precision=2)
with gr.Row():
maskgit_r_temp_input = gr.Number(value=4.5, label="MaskGit R Temp", precision=2)
cfg_input = gr.Number(value=2.5, label="CFG", precision=2)
sampler_input = gr.Dropdown(
choices=["maskgit", "maskgit_nucleus", "ddpm_cache"],
value="maskgit_nucleus",
label="Sampler"
)
# State to track the last set of files we processed for the editor.
num_editor_updates = gr.State(0)
# We only invoke `update_image_editor` on change, but it will no-op
# if no new file is present or if the file hasn't changed.
chat_input.change(
fn=update_image_editor,
inputs=[chat_input, image_editor, num_editor_updates, resolution_input],
outputs=[image_editor, num_editor_updates]
)
chat_input.submit(
handle_submit,
[
chatbot, chat_input, image_editor,
max_tokens_input, resolution_input, sampling_steps_input,
top_p_input, temperature_input, maskgit_r_temp_input,
cfg_input, sampler_input
],
[chatbot, chat_input, image_editor, num_editor_updates]
)
if __name__ == "__main__":
demo.launch(share=True)
|