File size: 10,888 Bytes
131da64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from __future__ import annotations

import base64
import copy
import io
import random
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import math
from PIL import Image
from image_utils import Im

from decoupled_utils import gprint

if TYPE_CHECKING:
    from demo.server import ChatRequest

def tensor_center_crop(tensor_image, crop_size):
    _, _, h, w = tensor_image.shape

    while h >= 2 * crop_size[0] and w >= 2 * crop_size[1]:
        tensor_image = F.interpolate(tensor_image, size=(h // 2, w // 2), mode='area')
        _, _, h, w = tensor_image.shape

    scale = max(crop_size[0] / h, crop_size[1] / w)
    new_h, new_w = round(h * scale), round(w * scale)
    tensor_image = F.interpolate(tensor_image, size=(new_h, new_w), mode='bilinear')

    crop_top = random.randint(0, new_h - crop_size[0])
    crop_left = random.randint(0, new_w - crop_size[1])
    crop_bottom = crop_top + crop_size[0]
    crop_right = crop_left + crop_size[1]
    return tensor_image[:, :, crop_top:crop_bottom, crop_left:crop_right]

def parse_messages(messages: List[dict]) -> Tuple[List[Image.Image], List[List[dict]]]:
    """
    Given a list of message dicts with format:
    [
        {"type": "text", "text": msg},
        {"type": "image_url", "image_url": <PIL Image>}
    ]
    
    Returns:
      - all_images: a list containing the PIL images, in the order of their appearance
      - all_content: a nested list (single conversation) with dicts indicating message type
    """
    all_images: List[Image.Image] = []
    conversation: List[dict] = []
    
    for msg in messages:
        if msg["type"] == "text":
            conversation.append(msg)
        elif msg["type"] == "image_url":
            idx = len(all_images)
            all_images.append(msg["image_url"])
            _msg = copy.deepcopy(msg)
            _msg["image_url"] = {"url": idx}
            conversation.append(_msg)
        else:
            raise ValueError(f"Unsupported message type: {msg['type']}. Expected 'text' or 'image_url'.")
    
    all_content = [conversation]
    return all_images, all_content

def messages_to_batch(config, tokenizer, model, input_data, resolution):
    import copy

    from model import get_image_batch
    from unidisc.tokenizers.tokenize_interleaved import _has_image, preprocess

    # Build conversations and extract images.
    all_images = []
    conversations = []
    for item in input_data:
        role = item["role"]
        assert role in ["user", "assistant"]
        role = "human" if role == "user" else "gpt"
        if item["type"] == "image_url":
            token = "<image>"
            all_images.append(item["image_url"])
        elif item["type"] == "text":
            token = item["text"]
        else:
            continue
        if conversations and conversations[-1]["from"] == role:
            conversations[-1]["value"] += " " + token
        else:
            conversations.append({"from": role, "value": token})

    output_list = []
    entry = {"id": "1", "conversations": conversations}
    if all_images:
        entry["image"] = {}
    output_list.append(entry)
    all_content = output_list

    vae = model.get_vae()
    device = model.device
    if not all_images:
        image_ids = None
    else:
        _img = torch.cat([
            tensor_center_crop(
                torch.from_numpy(np.array(img))[None, :].permute(0, 3, 1, 2) / 255,
                (resolution, resolution)
            ) for img in all_images
        ])
        try:
            batch_size = 32
            image_ids_list = []
            for i in range(0, len(_img), batch_size):
                batch = _img[i:i+batch_size]
                batch_ids = get_image_batch(config, vae, {"img": batch}, device)
                image_ids_list.append(batch_ids)
            image_ids = torch.cat(image_ids_list)
        except Exception as e:
            gprint(f"{_img.shape}, {e}")
            import traceback
            traceback.print_exc()

    all_input_ids = []
    all_attention_masks = []
    all_modality = []
    assert len(all_content) == 1
    for sources in all_content:
        has_image = _has_image(sources)
        sources = copy.deepcopy([sources["conversations"]])
        _image_ids = image_ids if has_image else None
        try:
            print(f"Sources: {sources}")
            data_dict = preprocess(sources, tokenizer, has_image=has_image, image_ids=_image_ids)
        except Exception as e:
            import traceback
            traceback.print_exc()
            gprint(f"Error in preprocess: {e}")
            return None, None, None
        input_ids = data_dict["input_ids"][0]
        attention_mask = data_dict["attention_mask"][0]
        modality = data_dict["modality"][0]
        if (input_ids[-2:] == tokenizer.eos_token_id).all():
            input_ids = input_ids[:-1]
            attention_mask = attention_mask[:-1]
            modality = modality[:-1]

        assert config.model.length >= input_ids.shape[0], f"Input ids length {input_ids.shape[0]} is greater than model length {config.model.length}"

        attention_mask = attention_mask.bool()
        print(f"Attention mask: {attention_mask.shape}, input ids: {input_ids.shape}, modality: {modality.shape}")
        
        if modality[-1] == 1:
            is_image = modality == 1
            change_points = torch.where(is_image[:-1] != is_image[1:])[0] + 1
            if change_points.numel() > 0:
                start_pos = change_points[-1].item()
                modality[start_pos:] = 0
                attention_mask[start_pos:] = False
                input_ids[start_pos:] = tokenizer.pad_token_id
        all_input_ids.append(input_ids)
        all_attention_masks.append(attention_mask)
        all_modality.append(modality)

    all_input_ids = torch.stack(all_input_ids)
    all_attention_masks = torch.stack(all_attention_masks)
    all_modality = torch.stack(all_modality)
    all_sample_ids = torch.zeros_like(all_modality, dtype=torch.long)
    all_sample_ids[~all_attention_masks] = -1
    batch = {
        "input_ids": all_input_ids,
        "attention_mask": all_attention_masks,
        "modality": all_modality.long(),
        "sample_ids": all_sample_ids.long(),
    }

    for k in batch:
        batch[k] = batch[k].to(device)

    batch["input_ids"] = torch.where(
        (batch["modality"] == 1) & (batch["input_ids"] != -1),
        batch["input_ids"] + config.data.img_token_shift,
        batch["input_ids"]
    )

    return batch

def pil_to_base64(image: Image.Image) -> str:
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def convert_to_model_input(messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    model_input = []
    for msg in messages:
        for part in msg.content:
            if part.type == "text" and part.text:
                model_input.append({
                    "type": "text",
                    "text": part.text,
                    "role": msg.role
                })
            elif part.type == "image_url" and part.image_url:
                model_input.append({
                    "type": "image_url",
                    "image_url": part.image_url,
                    "role": msg.role
                })
    return model_input

def convert_request_pil_to_base64(request: ChatRequest) -> ChatRequest:
    for msg in request.messages:
        for part in msg.content:
            if part.type == "image_url" and isinstance(part.image_url, Image.Image):
                buffered = io.BytesIO()
                part.image_url.convert("RGB").save(buffered, format="JPEG")
                base64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
                part.image_url = {"url": f"data:image/jpeg;base64,{base64_str}"}
    
    return request

def convert_request_base64_to_pil(request: ChatRequest) -> ChatRequest:
    for message in request.messages:
        for part in message.content:
            if part.type == "image_url" and "url" in part.image_url:
                image_data = part.image_url["url"]
                # Remove any data URL header, e.g. "data:image/jpeg;base64,"
                if image_data.startswith("data:"):
                    try:
                        header, image_data = image_data.split(",", 1)
                    except ValueError as e:
                        raise ValueError(
                            f"Invalid image URL format: {image_data}"
                        ) from e
                try:
                    decoded_bytes = base64.b64decode(image_data)
                    part.image_url = Image.open(io.BytesIO(decoded_bytes))
                except Exception as e:
                    raise ValueError(
                        f"Error decoding or loading image. Ensure the base64 string is valid. Details: {e}"
                    ) from e
    return request

def trim_merge_messages(request: ChatRequest) -> ChatRequest:
    # Remove empty text parts from each message
    for msg in request.messages:
        msg.content = [
            part for part in msg.content 
            if not (part.type == "text" and part.text.strip() == "")
        ]
    
    # Remove messages with no content
    request.messages = [
        msg for msg in request.messages
        if msg.content
    ]
    
    # Merge consecutive messages with the same role
    merged_messages = []
    for msg in request.messages:
        if merged_messages and merged_messages[-1].role == msg.role:
            merged_messages[-1].content.extend(msg.content)
        else:
            merged_messages.append(msg)
    
    request.messages = merged_messages
    return request

def save_grid_image(input_arr: torch.Tensor, output_name, row_len=None):
    # Convert to boolean then to int (0/1)
    x0_bool = input_arr.bool().long()
    n = x0_bool.numel()
    if row_len is None:
        row_len = math.ceil(math.sqrt(n))
    rows = math.ceil(n / row_len)
    total = rows * row_len
    # Pad with -1 to mark padded positions
    padded = torch.full((total,), -1, dtype=torch.long)
    padded[:n] = x0_bool
    grid = padded.reshape(rows, row_len)
    # Create an RGB image: false=black, true=white, padded=red
    image = torch.zeros((rows, row_len, 3), dtype=torch.uint8)
    mask_true = (grid == 1)
    mask_padding = (grid == -1)
    image[mask_true] = torch.tensor([255, 255, 255], dtype=torch.uint8)
    image[mask_padding] = torch.tensor([255, 0, 0], dtype=torch.uint8)
    img = Image.fromarray(image.numpy(), mode='RGB')
    
    from datetime import datetime
    output = Im(img).save(datetime.now().strftime("%Y_%m_%d-%H_%M_%S") + "_" + output_name)
    print(f"Saved visualization to {output}")
    return row_len