assile commited on
Commit
e923764
·
verified ·
1 Parent(s): eb965be

Upload 45 files

Browse files
Files changed (45) hide show
  1. roop/FaceSet.py +20 -0
  2. roop/ProcessEntry.py +7 -0
  3. roop/ProcessMgr.py +911 -0
  4. roop/ProcessOptions.py +21 -0
  5. roop/StreamWriter.py +60 -0
  6. roop/__init__.py +0 -0
  7. roop/__pycache__/FaceSet.cpython-310.pyc +0 -0
  8. roop/__pycache__/ProcessEntry.cpython-310.pyc +0 -0
  9. roop/__pycache__/ProcessMgr.cpython-310.pyc +0 -0
  10. roop/__pycache__/ProcessOptions.cpython-310.pyc +0 -0
  11. roop/__pycache__/StreamWriter.cpython-310.pyc +0 -0
  12. roop/__pycache__/__init__.cpython-310.pyc +0 -0
  13. roop/__pycache__/capturer.cpython-310.pyc +0 -0
  14. roop/__pycache__/core.cpython-310.pyc +0 -0
  15. roop/__pycache__/face_util.cpython-310.pyc +0 -0
  16. roop/__pycache__/ffmpeg_writer.cpython-310.pyc +0 -0
  17. roop/__pycache__/globals.cpython-310.pyc +0 -0
  18. roop/__pycache__/metadata.cpython-310.pyc +0 -0
  19. roop/__pycache__/template_parser.cpython-310.pyc +0 -0
  20. roop/__pycache__/typing.cpython-310.pyc +0 -0
  21. roop/__pycache__/util_ffmpeg.cpython-310.pyc +0 -0
  22. roop/__pycache__/utilities.cpython-310.pyc +0 -0
  23. roop/__pycache__/virtualcam.cpython-310.pyc +0 -0
  24. roop/__pycache__/vr_util.cpython-310.pyc +0 -0
  25. roop/capturer.py +46 -0
  26. roop/core.py +406 -0
  27. roop/face_util.py +338 -0
  28. roop/ffmpeg_writer.py +218 -0
  29. roop/globals.py +56 -0
  30. roop/metadata.py +2 -0
  31. roop/processors/__pycache__/Enhance_CodeFormer.cpython-310.pyc +0 -0
  32. roop/processors/__pycache__/Enhance_GFPGAN.cpython-310.pyc +0 -0
  33. roop/processors/__pycache__/Enhance_GPEN.cpython-310.pyc +0 -0
  34. roop/processors/__pycache__/Enhance_RestoreFormerPPlus.cpython-310.pyc +0 -0
  35. roop/processors/__pycache__/FaceSwapInsightFace.cpython-310.pyc +0 -0
  36. roop/processors/__pycache__/Frame_Masking.cpython-310.pyc +0 -0
  37. roop/processors/__pycache__/Mask_Clip2Seg.cpython-310.pyc +0 -0
  38. roop/processors/__pycache__/Mask_XSeg.cpython-310.pyc +0 -0
  39. roop/processors/__pycache__/__init__.cpython-310.pyc +0 -0
  40. roop/template_parser.py +23 -0
  41. roop/typing.py +9 -0
  42. roop/util_ffmpeg.py +130 -0
  43. roop/utilities.py +393 -0
  44. roop/virtualcam.py +88 -0
  45. roop/vr_util.py +57 -0
roop/FaceSet.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class FaceSet:
4
+ faces = []
5
+ ref_images = []
6
+ embedding_average = 'None'
7
+ embeddings_backup = None
8
+
9
+ def __init__(self):
10
+ self.faces = []
11
+ self.ref_images = []
12
+ self.embeddings_backup = None
13
+
14
+ def AverageEmbeddings(self):
15
+ if len(self.faces) > 1 and self.embeddings_backup is None:
16
+ self.embeddings_backup = self.faces[0]['embedding']
17
+ embeddings = [face.embedding for face in self.faces]
18
+
19
+ self.faces[0]['embedding'] = np.mean(embeddings, axis=0)
20
+ # try median too?
roop/ProcessEntry.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ class ProcessEntry:
2
+ def __init__(self, filename: str, start: int, end: int, fps: float):
3
+ self.filename = filename
4
+ self.finalname = None
5
+ self.startframe = start
6
+ self.endframe = end
7
+ self.fps = fps
roop/ProcessMgr.py ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import psutil
5
+
6
+ from roop.ProcessOptions import ProcessOptions
7
+
8
+ from roop.face_util import get_first_face, get_all_faces, rotate_anticlockwise, rotate_clockwise, clamp_cut_values
9
+ from roop.utilities import compute_cosine_distance, get_device, str_to_class, shuffle_array
10
+ import roop.vr_util as vr
11
+
12
+ from typing import Any, List, Callable
13
+ from roop.typing import Frame, Face
14
+ from concurrent.futures import ThreadPoolExecutor, as_completed
15
+ from threading import Thread, Lock
16
+ from queue import Queue
17
+ from tqdm import tqdm
18
+ from roop.ffmpeg_writer import FFMPEG_VideoWriter
19
+ from roop.StreamWriter import StreamWriter
20
+ import roop.globals
21
+
22
+
23
+
24
+ # Poor man's enum to be able to compare to int
25
+ class eNoFaceAction():
26
+ USE_ORIGINAL_FRAME = 0
27
+ RETRY_ROTATED = 1
28
+ SKIP_FRAME = 2
29
+ SKIP_FRAME_IF_DISSIMILAR = 3,
30
+ USE_LAST_SWAPPED = 4
31
+
32
+
33
+
34
+ def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
35
+ queue: Queue[str] = Queue()
36
+ for frame_path in temp_frame_paths:
37
+ queue.put(frame_path)
38
+ return queue
39
+
40
+
41
+ def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
42
+ queues = []
43
+ for _ in range(queue_per_future):
44
+ if not queue.empty():
45
+ queues.append(queue.get())
46
+ return queues
47
+
48
+
49
+
50
+ class ProcessMgr():
51
+ input_face_datas = []
52
+ target_face_datas = []
53
+
54
+ imagemask = None
55
+
56
+ processors = []
57
+ options : ProcessOptions = None
58
+
59
+ num_threads = 1
60
+ current_index = 0
61
+ processing_threads = 1
62
+ buffer_wait_time = 0.1
63
+
64
+ lock = Lock()
65
+
66
+ frames_queue = None
67
+ processed_queue = None
68
+
69
+ videowriter= None
70
+ streamwriter = None
71
+
72
+ progress_gradio = None
73
+ total_frames = 0
74
+
75
+ num_frames_no_face = 0
76
+ last_swapped_frame = None
77
+
78
+ output_to_file = None
79
+ output_to_cam = None
80
+
81
+
82
+ plugins = {
83
+ 'faceswap' : 'FaceSwapInsightFace',
84
+ 'mask_clip2seg' : 'Mask_Clip2Seg',
85
+ 'mask_xseg' : 'Mask_XSeg',
86
+ 'codeformer' : 'Enhance_CodeFormer',
87
+ 'gfpgan' : 'Enhance_GFPGAN',
88
+ 'dmdnet' : 'Enhance_DMDNet',
89
+ 'gpen' : 'Enhance_GPEN',
90
+ 'restoreformer++' : 'Enhance_RestoreFormerPPlus',
91
+ 'colorizer' : 'Frame_Colorizer',
92
+ 'filter_generic' : 'Frame_Filter',
93
+ 'removebg' : 'Frame_Masking',
94
+ 'upscale' : 'Frame_Upscale'
95
+ }
96
+
97
+ def __init__(self, progress):
98
+ if progress is not None:
99
+ self.progress_gradio = progress
100
+
101
+ def reuseOldProcessor(self, name:str):
102
+ for p in self.processors:
103
+ if p.processorname == name:
104
+ return p
105
+
106
+ return None
107
+
108
+
109
+ def initialize(self, input_faces, target_faces, options):
110
+ self.input_face_datas = input_faces
111
+ self.target_face_datas = target_faces
112
+ self.num_frames_no_face = 0
113
+ self.last_swapped_frame = None
114
+ self.options = options
115
+ devicename = get_device()
116
+
117
+ roop.globals.g_desired_face_analysis=["landmark_3d_68", "landmark_2d_106","detection","recognition"]
118
+ if options.swap_mode == "all_female" or options.swap_mode == "all_male":
119
+ roop.globals.g_desired_face_analysis.append("genderage")
120
+ elif options.swap_mode == "all_random":
121
+ # don't modify original list
122
+ self.input_face_datas = input_faces.copy()
123
+ shuffle_array(self.input_face_datas)
124
+
125
+
126
+ for p in self.processors:
127
+ newp = next((x for x in options.processors.keys() if x == p.processorname), None)
128
+ if newp is None:
129
+ p.Release()
130
+ del p
131
+
132
+ newprocessors = []
133
+ for key, extoption in options.processors.items():
134
+ p = self.reuseOldProcessor(key)
135
+ if p is None:
136
+ classname = self.plugins[key]
137
+ module = 'roop.processors.' + classname
138
+ p = str_to_class(module, classname)
139
+ if p is not None:
140
+ extoption.update({"devicename": devicename})
141
+ if p.type == "swap":
142
+ if self.options.swap_modelname == "InSwapper 128":
143
+ extoption.update({"modelname": "inswapper_128.onnx"})
144
+ elif self.options.swap_modelname == "ReSwapper 128":
145
+ extoption.update({"modelname": "reswapper_128.onnx"})
146
+ elif self.options.swap_modelname == "ReSwapper 256":
147
+ extoption.update({"modelname": "reswapper_256.onnx"})
148
+
149
+ p.Initialize(extoption)
150
+ newprocessors.append(p)
151
+ else:
152
+ print(f"Not using {module}")
153
+ self.processors = newprocessors
154
+
155
+
156
+
157
+ if isinstance(self.options.imagemask, dict) and self.options.imagemask.get("layers") and len(self.options.imagemask["layers"]) > 0:
158
+ self.options.imagemask = self.options.imagemask.get("layers")[0]
159
+ # Get rid of alpha
160
+ self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_RGBA2GRAY)
161
+ if np.any(self.options.imagemask):
162
+ mo = self.input_face_datas[0].faces[0].mask_offsets
163
+ self.options.imagemask = self.blur_area(self.options.imagemask, mo[4], mo[5])
164
+ self.options.imagemask = self.options.imagemask.astype(np.float32) / 255
165
+ self.options.imagemask = cv2.cvtColor(self.options.imagemask, cv2.COLOR_GRAY2RGB)
166
+ else:
167
+ self.options.imagemask = None
168
+
169
+ self.options.frame_processing = False
170
+ for p in self.processors:
171
+ if p.type.startswith("frame_"):
172
+ self.options.frame_processing = True
173
+
174
+
175
+
176
+
177
+
178
+
179
+ def run_batch(self, source_files, target_files, threads:int = 1):
180
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
181
+ self.total_frames = len(source_files)
182
+ self.num_threads = threads
183
+ with tqdm(total=self.total_frames, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
184
+ with ThreadPoolExecutor(max_workers=threads) as executor:
185
+ futures = []
186
+ queue = create_queue(source_files)
187
+ queue_per_future = max(len(source_files) // threads, 1)
188
+ while not queue.empty():
189
+ future = executor.submit(self.process_frames, source_files, target_files, pick_queue(queue, queue_per_future), lambda: self.update_progress(progress))
190
+ futures.append(future)
191
+ for future in as_completed(futures):
192
+ future.result()
193
+
194
+
195
+ def process_frames(self, source_files: List[str], target_files: List[str], current_files, update: Callable[[], None]) -> None:
196
+ for f in current_files:
197
+ if not roop.globals.processing:
198
+ return
199
+
200
+ # Decode the byte array into an OpenCV image
201
+ temp_frame = cv2.imdecode(np.fromfile(f, dtype=np.uint8), cv2.IMREAD_COLOR)
202
+ if temp_frame is not None:
203
+ if self.options.frame_processing:
204
+ for p in self.processors:
205
+ frame = p.Run(temp_frame)
206
+ resimg = frame
207
+ else:
208
+ resimg = self.process_frame(temp_frame)
209
+ if resimg is not None:
210
+ i = source_files.index(f)
211
+ # Also let numpy write the file to support utf-8/16 filenames
212
+ cv2.imencode(f'.{roop.globals.CFG.output_image_format}',resimg)[1].tofile(target_files[i])
213
+ if update:
214
+ update()
215
+
216
+
217
+
218
+ def read_frames_thread(self, cap, frame_start, frame_end, num_threads):
219
+ num_frame = 0
220
+ total_num = frame_end - frame_start
221
+ if frame_start > 0:
222
+ cap.set(cv2.CAP_PROP_POS_FRAMES,frame_start)
223
+
224
+ while True and roop.globals.processing:
225
+ ret, frame = cap.read()
226
+ if not ret:
227
+ break
228
+
229
+ self.frames_queue[num_frame % num_threads].put(frame, block=True)
230
+ num_frame += 1
231
+ if num_frame == total_num:
232
+ break
233
+
234
+ for i in range(num_threads):
235
+ self.frames_queue[i].put(None)
236
+
237
+
238
+
239
+ def process_videoframes(self, threadindex, progress) -> None:
240
+ while True:
241
+ frame = self.frames_queue[threadindex].get()
242
+ if frame is None:
243
+ self.processing_threads -= 1
244
+ self.processed_queue[threadindex].put((False, None))
245
+ return
246
+ else:
247
+ if self.options.frame_processing:
248
+ for p in self.processors:
249
+ frame = p.Run(frame)
250
+ resimg = frame
251
+ else:
252
+ resimg = self.process_frame(frame)
253
+ self.processed_queue[threadindex].put((True, resimg))
254
+ del frame
255
+ progress()
256
+
257
+
258
+ def write_frames_thread(self):
259
+ nextindex = 0
260
+ num_producers = self.num_threads
261
+
262
+ while True:
263
+ process, frame = self.processed_queue[nextindex % self.num_threads].get()
264
+ nextindex += 1
265
+ if frame is not None:
266
+ if self.output_to_file:
267
+ self.videowriter.write_frame(frame)
268
+ if self.output_to_cam:
269
+ self.streamwriter.WriteToStream(frame)
270
+ del frame
271
+ elif process == False:
272
+ num_producers -= 1
273
+ if num_producers < 1:
274
+ return
275
+
276
+
277
+
278
+ def run_batch_inmem(self, output_method, source_video, target_video, frame_start, frame_end, fps, threads:int = 1):
279
+ if len(self.processors) < 1:
280
+ print("No processor defined!")
281
+ return
282
+
283
+ cap = cv2.VideoCapture(source_video)
284
+ # frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
285
+ frame_count = (frame_end - frame_start) + 1
286
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
287
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
288
+
289
+ processed_resolution = None
290
+ for p in self.processors:
291
+ if hasattr(p, 'getProcessedResolution'):
292
+ processed_resolution = p.getProcessedResolution(width, height)
293
+ print(f"Processed resolution: {processed_resolution}")
294
+ if processed_resolution is not None:
295
+ width = processed_resolution[0]
296
+ height = processed_resolution[1]
297
+
298
+
299
+ self.total_frames = frame_count
300
+ self.num_threads = threads
301
+
302
+ self.processing_threads = self.num_threads
303
+ self.frames_queue = []
304
+ self.processed_queue = []
305
+ for _ in range(threads):
306
+ self.frames_queue.append(Queue(1))
307
+ self.processed_queue.append(Queue(1))
308
+
309
+ self.output_to_file = output_method != "Virtual Camera"
310
+ self.output_to_cam = output_method == "Virtual Camera" or output_method == "Both"
311
+
312
+ if self.output_to_file:
313
+ self.videowriter = FFMPEG_VideoWriter(target_video, (width, height), fps, codec=roop.globals.video_encoder, crf=roop.globals.video_quality, audiofile=None)
314
+ if self.output_to_cam:
315
+ self.streamwriter = StreamWriter((width, height), int(fps))
316
+
317
+ readthread = Thread(target=self.read_frames_thread, args=(cap, frame_start, frame_end, threads))
318
+ readthread.start()
319
+
320
+ writethread = Thread(target=self.write_frames_thread)
321
+ writethread.start()
322
+
323
+ progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
324
+ with tqdm(total=self.total_frames, desc='Processing', unit='frames', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
325
+ with ThreadPoolExecutor(thread_name_prefix='swap_proc', max_workers=self.num_threads) as executor:
326
+ futures = []
327
+
328
+ for threadindex in range(threads):
329
+ future = executor.submit(self.process_videoframes, threadindex, lambda: self.update_progress(progress))
330
+ futures.append(future)
331
+
332
+ for future in as_completed(futures):
333
+ future.result()
334
+ # wait for the task to complete
335
+ readthread.join()
336
+ writethread.join()
337
+ cap.release()
338
+ if self.output_to_file:
339
+ self.videowriter.close()
340
+ if self.output_to_cam:
341
+ self.streamwriter.Close()
342
+
343
+ self.frames_queue.clear()
344
+ self.processed_queue.clear()
345
+
346
+
347
+
348
+
349
+ def update_progress(self, progress: Any = None) -> None:
350
+ process = psutil.Process(os.getpid())
351
+ memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
352
+ progress.set_postfix({
353
+ 'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
354
+ 'execution_threads': self.num_threads
355
+ })
356
+ progress.update(1)
357
+ if self.progress_gradio is not None:
358
+ self.progress_gradio((progress.n, self.total_frames), desc='Processing', total=self.total_frames, unit='frames')
359
+
360
+
361
+
362
+ def process_frame(self, frame:Frame):
363
+ if len(self.input_face_datas) < 1 and not self.options.show_face_masking:
364
+ return frame
365
+ temp_frame = frame.copy()
366
+ num_swapped, temp_frame = self.swap_faces(frame, temp_frame)
367
+ if num_swapped > 0:
368
+ if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME_IF_DISSIMILAR:
369
+ if len(self.input_face_datas) > num_swapped:
370
+ return None
371
+ self.num_frames_no_face = 0
372
+ self.last_swapped_frame = temp_frame.copy()
373
+ return temp_frame
374
+ if roop.globals.no_face_action == eNoFaceAction.USE_LAST_SWAPPED:
375
+ if self.last_swapped_frame is not None and self.num_frames_no_face < self.options.max_num_reuse_frame:
376
+ self.num_frames_no_face += 1
377
+ return self.last_swapped_frame.copy()
378
+ return frame
379
+
380
+ elif roop.globals.no_face_action == eNoFaceAction.USE_ORIGINAL_FRAME:
381
+ return frame
382
+ if roop.globals.no_face_action == eNoFaceAction.SKIP_FRAME:
383
+ #This only works with in-mem processing, as it simply skips the frame.
384
+ #For 'extract frames' it simply leaves the unprocessed frame unprocessed and it gets used in the final output by ffmpeg.
385
+ #If we could delete that frame here, that'd work but that might cause ffmpeg to fail unless the frames are renamed, and I don't think we have the info on what frame it actually is?????
386
+ #alternatively, it could mark all the necessary frames for deletion, delete them at the end, then rename the remaining frames that might work?
387
+ return None
388
+ else:
389
+ return self.retry_rotated(frame)
390
+
391
+ def retry_rotated(self, frame):
392
+ copyframe = frame.copy()
393
+ copyframe = rotate_clockwise(copyframe)
394
+ temp_frame = copyframe.copy()
395
+ num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
396
+ if num_swapped > 0:
397
+ return rotate_anticlockwise(temp_frame)
398
+
399
+ copyframe = frame.copy()
400
+ copyframe = rotate_anticlockwise(copyframe)
401
+ temp_frame = copyframe.copy()
402
+ num_swapped, temp_frame = self.swap_faces(copyframe, temp_frame)
403
+ if num_swapped > 0:
404
+ return rotate_clockwise(temp_frame)
405
+ del copyframe
406
+ return frame
407
+
408
+
409
+
410
+ def swap_faces(self, frame, temp_frame):
411
+ num_faces_found = 0
412
+
413
+ if self.options.swap_mode == "first":
414
+ face = get_first_face(frame)
415
+
416
+ if face is None:
417
+ return num_faces_found, frame
418
+
419
+ num_faces_found += 1
420
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
421
+ del face
422
+
423
+ else:
424
+ faces = get_all_faces(frame)
425
+ if faces is None:
426
+ return num_faces_found, frame
427
+
428
+ if self.options.swap_mode == "all":
429
+ for face in faces:
430
+ num_faces_found += 1
431
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
432
+
433
+ elif self.options.swap_mode == "all_input" or self.options.swap_mode == "all_random":
434
+ for i,face in enumerate(faces):
435
+ num_faces_found += 1
436
+ if i < len(self.input_face_datas):
437
+ temp_frame = self.process_face(i, face, temp_frame)
438
+ else:
439
+ break
440
+
441
+ elif self.options.swap_mode == "selected":
442
+ num_targetfaces = len(self.target_face_datas)
443
+ use_index = num_targetfaces == 1
444
+ for i,tf in enumerate(self.target_face_datas):
445
+ for face in faces:
446
+ if compute_cosine_distance(tf.embedding, face.embedding) <= self.options.face_distance_threshold:
447
+ if i < len(self.input_face_datas):
448
+ if use_index:
449
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
450
+ else:
451
+ temp_frame = self.process_face(i, face, temp_frame)
452
+ num_faces_found += 1
453
+ if not roop.globals.vr_mode and num_faces_found == num_targetfaces:
454
+ break
455
+ elif self.options.swap_mode == "all_female" or self.options.swap_mode == "all_male":
456
+ gender = 'F' if self.options.swap_mode == "all_female" else 'M'
457
+ for face in faces:
458
+ if face.sex == gender:
459
+ num_faces_found += 1
460
+ temp_frame = self.process_face(self.options.selected_index, face, temp_frame)
461
+
462
+ # might be slower but way more clean to release everything here
463
+ for face in faces:
464
+ del face
465
+ faces.clear()
466
+
467
+
468
+
469
+ if roop.globals.vr_mode and num_faces_found % 2 > 0:
470
+ # stereo image, there has to be an even number of faces
471
+ num_faces_found = 0
472
+ return num_faces_found, frame
473
+ if num_faces_found == 0:
474
+ return num_faces_found, frame
475
+
476
+ #maskprocessor = next((x for x in self.processors if x.type == 'mask'), None)
477
+
478
+ if self.options.imagemask is not None and self.options.imagemask.shape == frame.shape:
479
+ temp_frame = self.simple_blend_with_mask(temp_frame, frame, self.options.imagemask)
480
+ return num_faces_found, temp_frame
481
+
482
+
483
+ def rotation_action(self, original_face:Face, frame:Frame):
484
+ (height, width) = frame.shape[:2]
485
+
486
+ bounding_box_width = original_face.bbox[2] - original_face.bbox[0]
487
+ bounding_box_height = original_face.bbox[3] - original_face.bbox[1]
488
+ horizontal_face = bounding_box_width > bounding_box_height
489
+
490
+ center_x = width // 2.0
491
+ start_x = original_face.bbox[0]
492
+ end_x = original_face.bbox[2]
493
+ bbox_center_x = start_x + (bounding_box_width // 2.0)
494
+
495
+ # need to leverage the array of landmarks as decribed here:
496
+ # https://github.com/deepinsight/insightface/tree/master/alignment/coordinate_reg
497
+ # basically, we should be able to check for the relative position of eyes and nose
498
+ # then use that to determine which way the face is actually facing when in a horizontal position
499
+ # and use that to determine the correct rotation_action
500
+
501
+ forehead_x = original_face.landmark_2d_106[72][0]
502
+ chin_x = original_face.landmark_2d_106[0][0]
503
+
504
+ if horizontal_face:
505
+ if chin_x < forehead_x:
506
+ # this is someone lying down with their face like this (:
507
+ return "rotate_anticlockwise"
508
+ elif forehead_x < chin_x:
509
+ # this is someone lying down with their face like this :)
510
+ return "rotate_clockwise"
511
+ if bbox_center_x >= center_x:
512
+ # this is someone lying down with their face in the right hand side of the frame
513
+ return "rotate_anticlockwise"
514
+ if bbox_center_x < center_x:
515
+ # this is someone lying down with their face in the left hand side of the frame
516
+ return "rotate_clockwise"
517
+
518
+ return None
519
+
520
+
521
+ def auto_rotate_frame(self, original_face, frame:Frame):
522
+ target_face = original_face
523
+ original_frame = frame
524
+
525
+ rotation_action = self.rotation_action(original_face, frame)
526
+
527
+ if rotation_action == "rotate_anticlockwise":
528
+ #face is horizontal, rotating frame anti-clockwise and getting face bounding box from rotated frame
529
+ frame = rotate_anticlockwise(frame)
530
+ elif rotation_action == "rotate_clockwise":
531
+ #face is horizontal, rotating frame clockwise and getting face bounding box from rotated frame
532
+ frame = rotate_clockwise(frame)
533
+
534
+ return target_face, frame, rotation_action
535
+
536
+
537
+ def auto_unrotate_frame(self, frame:Frame, rotation_action):
538
+ if rotation_action == "rotate_anticlockwise":
539
+ return rotate_clockwise(frame)
540
+ elif rotation_action == "rotate_clockwise":
541
+ return rotate_anticlockwise(frame)
542
+
543
+ return frame
544
+
545
+
546
+
547
+ def process_face(self,face_index, target_face:Face, frame:Frame):
548
+ from roop.face_util import align_crop
549
+
550
+ enhanced_frame = None
551
+ if(len(self.input_face_datas) > 0):
552
+ inputface = self.input_face_datas[face_index].faces[0]
553
+ else:
554
+ inputface = None
555
+
556
+ rotation_action = None
557
+ if roop.globals.autorotate_faces:
558
+ # check for sideways rotation of face
559
+ rotation_action = self.rotation_action(target_face, frame)
560
+ if rotation_action is not None:
561
+ (startX, startY, endX, endY) = target_face["bbox"].astype("int")
562
+ width = endX - startX
563
+ height = endY - startY
564
+ offs = int(max(width,height) * 0.25)
565
+ rotcutframe,startX, startY, endX, endY = self.cutout(frame, startX - offs, startY - offs, endX + offs, endY + offs)
566
+ if rotation_action == "rotate_anticlockwise":
567
+ rotcutframe = rotate_anticlockwise(rotcutframe)
568
+ elif rotation_action == "rotate_clockwise":
569
+ rotcutframe = rotate_clockwise(rotcutframe)
570
+ # rotate image and re-detect face to correct wonky landmarks
571
+ rotface = get_first_face(rotcutframe)
572
+ if rotface is None:
573
+ rotation_action = None
574
+ else:
575
+ saved_frame = frame.copy()
576
+ frame = rotcutframe
577
+ target_face = rotface
578
+
579
+
580
+
581
+ # if roop.globals.vr_mode:
582
+ # bbox = target_face.bbox
583
+ # [orig_width, orig_height, _] = frame.shape
584
+
585
+ # # Convert bounding box to ints
586
+ # x1, y1, x2, y2 = map(int, bbox)
587
+
588
+ # # Determine the center of the bounding box
589
+ # x_center = (x1 + x2) / 2
590
+ # y_center = (y1 + y2) / 2
591
+
592
+ # # Normalize coordinates to range [-1, 1]
593
+ # x_center_normalized = x_center / (orig_width / 2) - 1
594
+ # y_center_normalized = y_center / (orig_width / 2) - 1
595
+
596
+ # # Convert normalized coordinates to spherical (theta, phi)
597
+ # theta = x_center_normalized * 180 # Theta ranges from -180 to 180 degrees
598
+ # phi = -y_center_normalized * 90 # Phi ranges from -90 to 90 degrees
599
+
600
+ # img = vr.GetPerspective(frame, 90, theta, phi, 1280, 1280) # Generate perspective image
601
+
602
+
603
+ """ Code ported/adapted from Facefusion which borrowed the idea from Rope:
604
+ Kind of subsampling the cutout and aligned face image and faceswapping slices of it up to
605
+ the desired output resolution. This works around the current resolution limitations without using enhancers.
606
+ """
607
+ model_output_size = self.options.swap_output_size
608
+ subsample_size = max(self.options.subsample_size, model_output_size)
609
+ subsample_total = subsample_size // model_output_size
610
+ aligned_img, M = align_crop(frame, target_face.kps, subsample_size)
611
+
612
+ fake_frame = aligned_img
613
+ target_face.matrix = M
614
+
615
+ for p in self.processors:
616
+ if p.type == 'swap':
617
+ swap_result_frames = []
618
+ subsample_frames = self.implode_pixel_boost(aligned_img, model_output_size, subsample_total)
619
+ for sliced_frame in subsample_frames:
620
+ for _ in range(0,self.options.num_swap_steps):
621
+ sliced_frame = self.prepare_crop_frame(sliced_frame)
622
+ sliced_frame = p.Run(inputface, target_face, sliced_frame)
623
+ sliced_frame = self.normalize_swap_frame(sliced_frame)
624
+ swap_result_frames.append(sliced_frame)
625
+ fake_frame = self.explode_pixel_boost(swap_result_frames, model_output_size, subsample_total, subsample_size)
626
+ fake_frame = fake_frame.astype(np.uint8)
627
+ scale_factor = 0.0
628
+ elif p.type == 'mask':
629
+ fake_frame = self.process_mask(p, aligned_img, fake_frame)
630
+ else:
631
+ enhanced_frame, scale_factor = p.Run(self.input_face_datas[face_index], target_face, fake_frame)
632
+
633
+ upscale = 512
634
+ orig_width = fake_frame.shape[1]
635
+ if orig_width != upscale:
636
+ fake_frame = cv2.resize(fake_frame, (upscale, upscale), cv2.INTER_CUBIC)
637
+ mask_offsets = (0,0,0,0,1,20) if inputface is None else inputface.mask_offsets
638
+
639
+
640
+ if enhanced_frame is None:
641
+ scale_factor = int(upscale / orig_width)
642
+ result = self.paste_upscale(fake_frame, fake_frame, target_face.matrix, frame, scale_factor, mask_offsets)
643
+ else:
644
+ result = self.paste_upscale(fake_frame, enhanced_frame, target_face.matrix, frame, scale_factor, mask_offsets)
645
+
646
+ # Restore mouth before unrotating
647
+ if self.options.restore_original_mouth:
648
+ mouth_cutout, mouth_bb = self.create_mouth_mask(target_face, frame)
649
+ result = self.apply_mouth_area(result, mouth_cutout, mouth_bb)
650
+
651
+ if rotation_action is not None:
652
+ fake_frame = self.auto_unrotate_frame(result, rotation_action)
653
+ result = self.paste_simple(fake_frame, saved_frame, startX, startY)
654
+
655
+ return result
656
+
657
+
658
+
659
+
660
+ def cutout(self, frame:Frame, start_x, start_y, end_x, end_y):
661
+ if start_x < 0:
662
+ start_x = 0
663
+ if start_y < 0:
664
+ start_y = 0
665
+ if end_x > frame.shape[1]:
666
+ end_x = frame.shape[1]
667
+ if end_y > frame.shape[0]:
668
+ end_y = frame.shape[0]
669
+ return frame[start_y:end_y, start_x:end_x], start_x, start_y, end_x, end_y
670
+
671
+ def paste_simple(self, src:Frame, dest:Frame, start_x, start_y):
672
+ end_x = start_x + src.shape[1]
673
+ end_y = start_y + src.shape[0]
674
+
675
+ start_x, end_x, start_y, end_y = clamp_cut_values(start_x, end_x, start_y, end_y, dest)
676
+ dest[start_y:end_y, start_x:end_x] = src
677
+ return dest
678
+
679
+ def simple_blend_with_mask(self, image1, image2, mask):
680
+ # Blend the images
681
+ blended_image = image1.astype(np.float32) * (1.0 - mask) + image2.astype(np.float32) * mask
682
+ return blended_image.astype(np.uint8)
683
+
684
+
685
+ def paste_upscale(self, fake_face, upsk_face, M, target_img, scale_factor, mask_offsets):
686
+ M_scale = M * scale_factor
687
+ IM = cv2.invertAffineTransform(M_scale)
688
+
689
+ face_matte = np.full((target_img.shape[0],target_img.shape[1]), 255, dtype=np.uint8)
690
+ # Generate white square sized as a upsk_face
691
+ img_matte = np.zeros((upsk_face.shape[0],upsk_face.shape[1]), dtype=np.uint8)
692
+
693
+ w = img_matte.shape[1]
694
+ h = img_matte.shape[0]
695
+
696
+ top = int(mask_offsets[0] * h)
697
+ bottom = int(h - (mask_offsets[1] * h))
698
+ left = int(mask_offsets[2] * w)
699
+ right = int(w - (mask_offsets[3] * w))
700
+ img_matte[top:bottom,left:right] = 255
701
+
702
+ # Transform white square back to target_img
703
+ img_matte = cv2.warpAffine(img_matte, IM, (target_img.shape[1], target_img.shape[0]), flags=cv2.INTER_NEAREST, borderValue=0.0)
704
+ ##Blacken the edges of face_matte by 1 pixels (so the mask in not expanded on the image edges)
705
+ img_matte[:1,:] = img_matte[-1:,:] = img_matte[:,:1] = img_matte[:,-1:] = 0
706
+
707
+ img_matte = self.blur_area(img_matte, mask_offsets[4], mask_offsets[5])
708
+ #Normalize images to float values and reshape
709
+ img_matte = img_matte.astype(np.float32)/255
710
+ face_matte = face_matte.astype(np.float32)/255
711
+ img_matte = np.minimum(face_matte, img_matte)
712
+ if self.options.show_face_area_overlay:
713
+ # Additional steps for green overlay
714
+ green_overlay = np.zeros_like(target_img)
715
+ green_color = [0, 255, 0] # RGB for green
716
+ for i in range(3): # Apply green color where img_matte is not zero
717
+ green_overlay[:, :, i] = np.where(img_matte > 0, green_color[i], 0) ##Transform upcaled face back to target_img
718
+ img_matte = np.reshape(img_matte, [img_matte.shape[0],img_matte.shape[1],1])
719
+ paste_face = cv2.warpAffine(upsk_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
720
+ if upsk_face is not fake_face:
721
+ fake_face = cv2.warpAffine(fake_face, IM, (target_img.shape[1], target_img.shape[0]), borderMode=cv2.BORDER_REPLICATE)
722
+ paste_face = cv2.addWeighted(paste_face, self.options.blend_ratio, fake_face, 1.0 - self.options.blend_ratio, 0)
723
+
724
+ # Re-assemble image
725
+ paste_face = img_matte * paste_face
726
+ paste_face = paste_face + (1-img_matte) * target_img.astype(np.float32)
727
+ if self.options.show_face_area_overlay:
728
+ # Overlay the green overlay on the final image
729
+ paste_face = cv2.addWeighted(paste_face.astype(np.uint8), 1 - 0.5, green_overlay, 0.5, 0)
730
+ return paste_face.astype(np.uint8)
731
+
732
+
733
+ def blur_area(self, img_matte, num_erosion_iterations, blur_amount):
734
+ # Detect the affine transformed white area
735
+ mask_h_inds, mask_w_inds = np.where(img_matte==255)
736
+ # Calculate the size (and diagonal size) of transformed white area width and height boundaries
737
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
738
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
739
+ mask_size = int(np.sqrt(mask_h*mask_w))
740
+ # Calculate the kernel size for eroding img_matte by kernel (insightface empirical guess for best size was max(mask_size//10,10))
741
+ # k = max(mask_size//12, 8)
742
+ k = max(mask_size//(blur_amount // 2) , blur_amount // 2)
743
+ kernel = np.ones((k,k),np.uint8)
744
+ img_matte = cv2.erode(img_matte,kernel,iterations = num_erosion_iterations)
745
+ #Calculate the kernel size for blurring img_matte by blur_size (insightface empirical guess for best size was max(mask_size//20, 5))
746
+ # k = max(mask_size//24, 4)
747
+ k = max(mask_size//blur_amount, blur_amount//5)
748
+ kernel_size = (k, k)
749
+ blur_size = tuple(2*i+1 for i in kernel_size)
750
+ return cv2.GaussianBlur(img_matte, blur_size, 0)
751
+
752
+
753
+ def prepare_crop_frame(self, swap_frame):
754
+ model_type = 'inswapper'
755
+ model_mean = [0.0, 0.0, 0.0]
756
+ model_standard_deviation = [1.0, 1.0, 1.0]
757
+
758
+ if model_type == 'ghost':
759
+ swap_frame = swap_frame[:, :, ::-1] / 127.5 - 1
760
+ else:
761
+ swap_frame = swap_frame[:, :, ::-1] / 255.0
762
+ swap_frame = (swap_frame - model_mean) / model_standard_deviation
763
+ swap_frame = swap_frame.transpose(2, 0, 1)
764
+ swap_frame = np.expand_dims(swap_frame, axis = 0).astype(np.float32)
765
+ return swap_frame
766
+
767
+
768
+ def normalize_swap_frame(self, swap_frame):
769
+ model_type = 'inswapper'
770
+ swap_frame = swap_frame.transpose(1, 2, 0)
771
+
772
+ if model_type == 'ghost':
773
+ swap_frame = (swap_frame * 127.5 + 127.5).round()
774
+ else:
775
+ swap_frame = (swap_frame * 255.0).round()
776
+ swap_frame = swap_frame[:, :, ::-1]
777
+ return swap_frame
778
+
779
+ def implode_pixel_boost(self, aligned_face_frame, model_size, pixel_boost_total : int):
780
+ subsample_frame = aligned_face_frame.reshape(model_size, pixel_boost_total, model_size, pixel_boost_total, 3)
781
+ subsample_frame = subsample_frame.transpose(1, 3, 0, 2, 4).reshape(pixel_boost_total ** 2, model_size, model_size, 3)
782
+ return subsample_frame
783
+
784
+
785
+ def explode_pixel_boost(self, subsample_frame, model_size, pixel_boost_total, pixel_boost_size):
786
+ final_frame = np.stack(subsample_frame, axis = 0).reshape(pixel_boost_total, pixel_boost_total, model_size, model_size, 3)
787
+ final_frame = final_frame.transpose(2, 0, 3, 1, 4).reshape(pixel_boost_size, pixel_boost_size, 3)
788
+ return final_frame
789
+
790
+ def process_mask(self, processor, frame:Frame, target:Frame):
791
+ img_mask = processor.Run(frame, self.options.masking_text)
792
+ img_mask = cv2.resize(img_mask, (target.shape[1], target.shape[0]))
793
+ img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
794
+
795
+ if self.options.show_face_masking:
796
+ result = (1 - img_mask) * frame.astype(np.float32)
797
+ return np.uint8(result)
798
+
799
+
800
+ target = target.astype(np.float32)
801
+ result = (1-img_mask) * target
802
+ result += img_mask * frame.astype(np.float32)
803
+ return np.uint8(result)
804
+
805
+
806
+ # Code for mouth restoration adapted from https://github.com/iVideoGameBoss/iRoopDeepFaceCam
807
+
808
+ def create_mouth_mask(self, face: Face, frame: Frame):
809
+ mouth_cutout = None
810
+
811
+ landmarks = face.landmark_2d_106
812
+ if landmarks is not None:
813
+ # Get mouth landmarks (indices 52 to 71 typically represent the outer mouth)
814
+ mouth_points = landmarks[52:71].astype(np.int32)
815
+
816
+ # Add padding to mouth area
817
+ min_x, min_y = np.min(mouth_points, axis=0)
818
+ max_x, max_y = np.max(mouth_points, axis=0)
819
+ min_x = max(0, min_x - (15*6))
820
+ min_y = max(0, min_y - 22)
821
+ max_x = min(frame.shape[1], max_x + (15*6))
822
+ max_y = min(frame.shape[0], max_y + (90*6))
823
+
824
+ # Extract the mouth area from the frame using the calculated bounding box
825
+ mouth_cutout = frame[min_y:max_y, min_x:max_x].copy()
826
+
827
+ return mouth_cutout, (min_x, min_y, max_x, max_y)
828
+
829
+
830
+
831
+ def create_feathered_mask(self, shape, feather_amount=30):
832
+ mask = np.zeros(shape[:2], dtype=np.float32)
833
+ center = (shape[1] // 2, shape[0] // 2)
834
+ cv2.ellipse(mask, center, (shape[1] // 2 - feather_amount, shape[0] // 2 - feather_amount),
835
+ 0, 0, 360, 1, -1)
836
+ mask = cv2.GaussianBlur(mask, (feather_amount*2+1, feather_amount*2+1), 0)
837
+ return mask / np.max(mask)
838
+
839
+ def apply_mouth_area(self, frame: np.ndarray, mouth_cutout: np.ndarray, mouth_box: tuple) -> np.ndarray:
840
+ min_x, min_y, max_x, max_y = mouth_box
841
+ box_width = max_x - min_x
842
+ box_height = max_y - min_y
843
+
844
+
845
+ # Resize the mouth cutout to match the mouth box size
846
+ if mouth_cutout is None or box_width is None or box_height is None:
847
+ return frame
848
+ try:
849
+ resized_mouth_cutout = cv2.resize(mouth_cutout, (box_width, box_height))
850
+
851
+ # Extract the region of interest (ROI) from the target frame
852
+ roi = frame[min_y:max_y, min_x:max_x]
853
+
854
+ # Ensure the ROI and resized_mouth_cutout have the same shape
855
+ if roi.shape != resized_mouth_cutout.shape:
856
+ resized_mouth_cutout = cv2.resize(resized_mouth_cutout, (roi.shape[1], roi.shape[0]))
857
+
858
+ # Apply color transfer from ROI to mouth cutout
859
+ color_corrected_mouth = self.apply_color_transfer(resized_mouth_cutout, roi)
860
+
861
+ # Create a feathered mask with increased feather amount
862
+ feather_amount = min(30, box_width // 15, box_height // 15)
863
+ mask = self.create_feathered_mask(resized_mouth_cutout.shape, feather_amount)
864
+
865
+ # Blend the color-corrected mouth cutout with the ROI using the feathered mask
866
+ mask = mask[:,:,np.newaxis] # Add channel dimension to mask
867
+ blended = (color_corrected_mouth * mask + roi * (1 - mask)).astype(np.uint8)
868
+
869
+ # Place the blended result back into the frame
870
+ frame[min_y:max_y, min_x:max_x] = blended
871
+ except Exception as e:
872
+ print(f'Error {e}')
873
+ pass
874
+
875
+ return frame
876
+
877
+ def apply_color_transfer(self, source, target):
878
+ """
879
+ Apply color transfer from target to source image
880
+ """
881
+ source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32")
882
+ target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32")
883
+
884
+ source_mean, source_std = cv2.meanStdDev(source)
885
+ target_mean, target_std = cv2.meanStdDev(target)
886
+
887
+ # Reshape mean and std to be broadcastable
888
+ source_mean = source_mean.reshape(1, 1, 3)
889
+ source_std = source_std.reshape(1, 1, 3)
890
+ target_mean = target_mean.reshape(1, 1, 3)
891
+ target_std = target_std.reshape(1, 1, 3)
892
+
893
+ # Perform the color transfer
894
+ source = (source - source_mean) * (target_std / source_std) + target_mean
895
+ return cv2.cvtColor(np.clip(source, 0, 255).astype("uint8"), cv2.COLOR_LAB2BGR)
896
+
897
+
898
+
899
+ def unload_models():
900
+ pass
901
+
902
+
903
+ def release_resources(self):
904
+ for p in self.processors:
905
+ p.Release()
906
+ self.processors.clear()
907
+ if self.videowriter is not None:
908
+ self.videowriter.close()
909
+ if self.streamwriter is not None:
910
+ self.streamwriter.Close()
911
+
roop/ProcessOptions.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class ProcessOptions:
2
+
3
+ def __init__(self, swap_model, processordefines:dict, face_distance, blend_ratio, swap_mode, selected_index, masking_text, imagemask, num_steps, subsample_size, show_face_area, restore_original_mouth, show_mask=False):
4
+ if swap_model is not None:
5
+ self.swap_modelname = swap_model
6
+ self.swap_output_size = int(swap_model.split()[-1])
7
+ else:
8
+ self.swap_output_size = 128
9
+ self.processors = processordefines
10
+ self.face_distance_threshold = face_distance
11
+ self.blend_ratio = blend_ratio
12
+ self.swap_mode = swap_mode
13
+ self.selected_index = selected_index
14
+ self.masking_text = masking_text
15
+ self.imagemask = imagemask
16
+ self.num_swap_steps = num_steps
17
+ self.show_face_area_overlay = show_face_area
18
+ self.show_face_masking = show_mask
19
+ self.subsample_size = subsample_size
20
+ self.restore_original_mouth = restore_original_mouth
21
+ self.max_num_reuse_frame = 15
roop/StreamWriter.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ import time
3
+ import pyvirtualcam
4
+
5
+
6
+ class StreamWriter():
7
+ FPS = 30
8
+ VCam = None
9
+ Active = False
10
+ THREAD_LOCK_STREAM = threading.Lock()
11
+ time_last_process = None
12
+ timespan_min = 0.0
13
+
14
+ def __enter__(self):
15
+ return self
16
+
17
+ def __exit__(self, exc_type, exc_value, traceback):
18
+ self.Close()
19
+
20
+ def __init__(self, size, fps):
21
+ self.time_last_process = time.perf_counter()
22
+ self.FPS = fps
23
+ self.timespan_min = 1.0 / fps
24
+ print('Detecting virtual cam devices')
25
+ self.VCam = pyvirtualcam.Camera(width=size[0], height=size[1], fps=fps, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
26
+ if self.VCam is None:
27
+ print("No virtual camera found!")
28
+ return
29
+ print(f'Using virtual camera: {self.VCam.device}')
30
+ print(f'Using {self.VCam.native_fmt}')
31
+ self.Active = True
32
+
33
+
34
+ def LimitFrames(self):
35
+ while True:
36
+ current_time = time.perf_counter()
37
+ time_passed = current_time - self.time_last_process
38
+ if time_passed >= self.timespan_min:
39
+ break
40
+
41
+ # First version used a queue and threading. Surprisingly this
42
+ # totally simple, blocking version is 10 times faster!
43
+ def WriteToStream(self, frame):
44
+ if self.VCam is None:
45
+ return
46
+ with self.THREAD_LOCK_STREAM:
47
+ self.LimitFrames()
48
+ self.VCam.send(frame)
49
+ self.time_last_process = time.perf_counter()
50
+
51
+
52
+ def Close(self):
53
+ self.Active = False
54
+ if self.VCam is None:
55
+ self.VCam.close()
56
+ self.VCam = None
57
+
58
+
59
+
60
+
roop/__init__.py ADDED
Binary file (1.02 kB). View file
 
roop/__pycache__/FaceSet.cpython-310.pyc ADDED
Binary file (1.02 kB). View file
 
roop/__pycache__/ProcessEntry.cpython-310.pyc ADDED
Binary file (595 Bytes). View file
 
roop/__pycache__/ProcessMgr.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
roop/__pycache__/ProcessOptions.cpython-310.pyc ADDED
Binary file (987 Bytes). View file
 
roop/__pycache__/StreamWriter.cpython-310.pyc ADDED
Binary file (2 kB). View file
 
roop/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (153 Bytes). View file
 
roop/__pycache__/capturer.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
roop/__pycache__/core.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
roop/__pycache__/face_util.cpython-310.pyc ADDED
Binary file (8.05 kB). View file
 
roop/__pycache__/ffmpeg_writer.cpython-310.pyc ADDED
Binary file (5.64 kB). View file
 
roop/__pycache__/globals.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
roop/__pycache__/metadata.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
roop/__pycache__/template_parser.cpython-310.pyc ADDED
Binary file (1.11 kB). View file
 
roop/__pycache__/typing.cpython-310.pyc ADDED
Binary file (341 Bytes). View file
 
roop/__pycache__/util_ffmpeg.cpython-310.pyc ADDED
Binary file (4.65 kB). View file
 
roop/__pycache__/utilities.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
roop/__pycache__/virtualcam.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
roop/__pycache__/vr_util.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
roop/capturer.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ import cv2
3
+ import numpy as np
4
+
5
+ from roop.typing import Frame
6
+
7
+ current_video_path = None
8
+ current_frame_total = 0
9
+ current_capture = None
10
+
11
+ def get_image_frame(filename: str):
12
+ try:
13
+ return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
14
+ except:
15
+ print(f"Exception reading {filename}")
16
+ return None
17
+
18
+
19
+ def get_video_frame(video_path: str, frame_number: int = 0) -> Optional[Frame]:
20
+ global current_video_path, current_capture, current_frame_total
21
+
22
+ if video_path != current_video_path:
23
+ release_video()
24
+ current_capture = cv2.VideoCapture(video_path)
25
+ current_video_path = video_path
26
+ current_frame_total = current_capture.get(cv2.CAP_PROP_FRAME_COUNT)
27
+
28
+ current_capture.set(cv2.CAP_PROP_POS_FRAMES, min(current_frame_total, frame_number - 1))
29
+ has_frame, frame = current_capture.read()
30
+ if has_frame:
31
+ return frame
32
+ return None
33
+
34
+ def release_video():
35
+ global current_capture
36
+
37
+ if current_capture is not None:
38
+ current_capture.release()
39
+ current_capture = None
40
+
41
+
42
+ def get_video_frame_total(video_path: str) -> int:
43
+ capture = cv2.VideoCapture(video_path)
44
+ video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
45
+ capture.release()
46
+ return video_frame_total
roop/core.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import os
4
+ import sys
5
+ import shutil
6
+ # single thread doubles cuda performance - needs to be set before torch import
7
+ if any(arg.startswith('--execution-provider') for arg in sys.argv):
8
+ os.environ['OMP_NUM_THREADS'] = '1'
9
+
10
+ import warnings
11
+ from typing import List
12
+ import platform
13
+ import signal
14
+ import torch
15
+ import onnxruntime
16
+ import pathlib
17
+ import argparse
18
+
19
+ from time import time
20
+
21
+ import roop.globals
22
+ import roop.metadata
23
+ import roop.utilities as util
24
+ import roop.util_ffmpeg as ffmpeg
25
+ import ui.main as main
26
+ from settings import Settings
27
+ from roop.face_util import extract_face_images
28
+ from roop.ProcessEntry import ProcessEntry
29
+ from roop.ProcessMgr import ProcessMgr
30
+ from roop.ProcessOptions import ProcessOptions
31
+ from roop.capturer import get_video_frame_total, release_video
32
+
33
+
34
+ clip_text = None
35
+
36
+ call_display_ui = None
37
+
38
+ process_mgr = None
39
+
40
+
41
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
42
+ del torch
43
+
44
+ warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
45
+ warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
46
+
47
+
48
+ def parse_args() -> None:
49
+ signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
50
+ roop.globals.headless = False
51
+
52
+ program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
53
+ program.add_argument('--server_share', help='Public server', dest='server_share', action='store_true', default=False)
54
+ program.add_argument('--cuda_device_id', help='Index of the cuda gpu to use', dest='cuda_device_id', type=int, default=0)
55
+ roop.globals.startup_args = program.parse_args()
56
+ # Always enable all processors when using GUI
57
+ roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
58
+
59
+
60
+ def encode_execution_providers(execution_providers: List[str]) -> List[str]:
61
+ return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
62
+
63
+
64
+ def decode_execution_providers(execution_providers: List[str]) -> List[str]:
65
+ list_providers = [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
66
+ if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
67
+
68
+ try:
69
+ for i in range(len(list_providers)):
70
+ if list_providers[i] == 'CUDAExecutionProvider':
71
+ list_providers[i] = ('CUDAExecutionProvider', {'device_id': roop.globals.cuda_device_id})
72
+ torch.cuda.set_device(roop.globals.cuda_device_id)
73
+ break
74
+ except:
75
+ pass
76
+
77
+ return list_providers
78
+
79
+
80
+
81
+ def suggest_max_memory() -> int:
82
+ if platform.system().lower() == 'darwin':
83
+ return 4
84
+ return 16
85
+
86
+
87
+ def suggest_execution_providers() -> List[str]:
88
+ return encode_execution_providers(onnxruntime.get_available_providers())
89
+
90
+
91
+ def suggest_execution_threads() -> int:
92
+ if 'DmlExecutionProvider' in roop.globals.execution_providers:
93
+ return 1
94
+ if 'ROCMExecutionProvider' in roop.globals.execution_providers:
95
+ return 1
96
+ return 8
97
+
98
+
99
+ def limit_resources() -> None:
100
+ # limit memory usage
101
+ if roop.globals.max_memory:
102
+ memory = roop.globals.max_memory * 1024 ** 3
103
+ if platform.system().lower() == 'darwin':
104
+ memory = roop.globals.max_memory * 1024 ** 6
105
+ if platform.system().lower() == 'windows':
106
+ import ctypes
107
+ kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
108
+ kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
109
+ else:
110
+ import resource
111
+ resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
112
+
113
+
114
+
115
+ def release_resources() -> None:
116
+ import gc
117
+ global process_mgr
118
+
119
+ if process_mgr is not None:
120
+ process_mgr.release_resources()
121
+ process_mgr = None
122
+
123
+ gc.collect()
124
+ if 'CUDAExecutionProvider' in roop.globals.execution_providers and torch.cuda.is_available():
125
+ with torch.cuda.device('cuda'):
126
+ torch.cuda.empty_cache()
127
+ torch.cuda.ipc_collect()
128
+
129
+
130
+ def pre_check() -> bool:
131
+ if sys.version_info < (3, 9):
132
+ update_status('Python version is not supported - please upgrade to 3.9 or higher.')
133
+ return False
134
+
135
+ download_directory_path = util.resolve_relative_path('../models')
136
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
137
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_128.onnx'])
138
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/reswapper_256.onnx'])
139
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GFPGANv1.4.onnx'])
140
+ util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
141
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/GPEN-BFR-512.onnx'])
142
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/restoreformer_plus_plus.onnx'])
143
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/xseg.onnx'])
144
+ download_directory_path = util.resolve_relative_path('../models/CLIP')
145
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
146
+ download_directory_path = util.resolve_relative_path('../models/CodeFormer')
147
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/CodeFormerv0.1.onnx'])
148
+ download_directory_path = util.resolve_relative_path('../models/Frame')
149
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_artistic.onnx'])
150
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/deoldify_stable.onnx'])
151
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/isnet-general-use.onnx'])
152
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x4.onnx'])
153
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/real_esrgan_x2.onnx'])
154
+ util.conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/lsdir_x4.onnx'])
155
+
156
+ if not shutil.which('ffmpeg'):
157
+ update_status('ffmpeg is not installed.')
158
+ return True
159
+
160
+ def set_display_ui(function):
161
+ global call_display_ui
162
+
163
+ call_display_ui = function
164
+
165
+
166
+ def update_status(message: str) -> None:
167
+ global call_display_ui
168
+
169
+ print(message)
170
+ if call_display_ui is not None:
171
+ call_display_ui(message)
172
+
173
+
174
+
175
+
176
+ def start() -> None:
177
+ if roop.globals.headless:
178
+ print('Headless mode currently unsupported - starting UI!')
179
+ # faces = extract_face_images(roop.globals.source_path, (False, 0))
180
+ # roop.globals.INPUT_FACES.append(faces[roop.globals.source_face_index])
181
+ # faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
182
+ # roop.globals.TARGET_FACES.append(faces[roop.globals.target_face_index])
183
+ # if 'face_enhancer' in roop.globals.frame_processors:
184
+ # roop.globals.selected_enhancer = 'GFPGAN'
185
+
186
+ batch_process_regular(None, False, None)
187
+
188
+
189
+ def get_processing_plugins(masking_engine):
190
+ processors = { "faceswap": {}}
191
+ if masking_engine is not None:
192
+ processors.update({masking_engine: {}})
193
+
194
+ if roop.globals.selected_enhancer == 'GFPGAN':
195
+ processors.update({"gfpgan": {}})
196
+ elif roop.globals.selected_enhancer == 'Codeformer':
197
+ processors.update({"codeformer": {}})
198
+ elif roop.globals.selected_enhancer == 'DMDNet':
199
+ processors.update({"dmdnet": {}})
200
+ elif roop.globals.selected_enhancer == 'GPEN':
201
+ processors.update({"gpen": {}})
202
+ elif roop.globals.selected_enhancer == 'Restoreformer++':
203
+ processors.update({"restoreformer++": {}})
204
+ return processors
205
+
206
+
207
+ def live_swap(frame, options):
208
+ global process_mgr
209
+
210
+ if frame is None:
211
+ return frame
212
+
213
+ if process_mgr is None:
214
+ process_mgr = ProcessMgr(None)
215
+
216
+ # if len(roop.globals.INPUT_FACESETS) <= selected_index:
217
+ # selected_index = 0
218
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
219
+ newframe = process_mgr.process_frame(frame)
220
+ if newframe is None:
221
+ return frame
222
+ return newframe
223
+
224
+
225
+ def batch_process_regular(swap_model, output_method, files:list[ProcessEntry], masking_engine:str, new_clip_text:str, use_new_method, imagemask, restore_original_mouth, num_swap_steps, progress, selected_index = 0) -> None:
226
+ global clip_text, process_mgr
227
+
228
+ release_resources()
229
+ limit_resources()
230
+ if process_mgr is None:
231
+ process_mgr = ProcessMgr(progress)
232
+ mask = imagemask["layers"][0] if imagemask is not None else None
233
+ if len(roop.globals.INPUT_FACESETS) <= selected_index:
234
+ selected_index = 0
235
+ options = ProcessOptions(swap_model, get_processing_plugins(masking_engine), roop.globals.distance_threshold, roop.globals.blend_ratio,
236
+ roop.globals.face_swap_mode, selected_index, new_clip_text, mask, num_swap_steps,
237
+ roop.globals.subsample_size, False, restore_original_mouth)
238
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
239
+ batch_process(output_method, files, use_new_method)
240
+ return
241
+
242
+ def batch_process_with_options(files:list[ProcessEntry], options, progress):
243
+ global clip_text, process_mgr
244
+
245
+ release_resources()
246
+ limit_resources()
247
+ if process_mgr is None:
248
+ process_mgr = ProcessMgr(progress)
249
+ process_mgr.initialize(roop.globals.INPUT_FACESETS, roop.globals.TARGET_FACES, options)
250
+ roop.globals.keep_frames = False
251
+ roop.globals.wait_after_extraction = False
252
+ roop.globals.skip_audio = False
253
+ batch_process("Files", files, True)
254
+
255
+
256
+
257
+ def batch_process(output_method, files:list[ProcessEntry], use_new_method) -> None:
258
+ global clip_text, process_mgr
259
+
260
+ roop.globals.processing = True
261
+
262
+ # limit threads for some providers
263
+ max_threads = suggest_execution_threads()
264
+ if max_threads == 1:
265
+ roop.globals.execution_threads = 1
266
+
267
+ imagefiles:list[ProcessEntry] = []
268
+ videofiles:list[ProcessEntry] = []
269
+
270
+ update_status('Sorting videos/images')
271
+
272
+
273
+ for index, f in enumerate(files):
274
+ fullname = f.filename
275
+ if util.has_image_extension(fullname):
276
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'.{roop.globals.CFG.output_image_format}')
277
+ destination = util.replace_template(destination, index=index)
278
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
279
+ f.finalname = destination
280
+ imagefiles.append(f)
281
+
282
+ elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
283
+ destination = util.get_destfilename_from_path(fullname, roop.globals.output_path, f'__temp.{roop.globals.CFG.output_video_format}')
284
+ f.finalname = destination
285
+ videofiles.append(f)
286
+
287
+
288
+
289
+ if(len(imagefiles) > 0):
290
+ update_status('Processing image(s)')
291
+ origimages = []
292
+ fakeimages = []
293
+ for f in imagefiles:
294
+ origimages.append(f.filename)
295
+ fakeimages.append(f.finalname)
296
+
297
+ process_mgr.run_batch(origimages, fakeimages, roop.globals.execution_threads)
298
+ origimages.clear()
299
+ fakeimages.clear()
300
+
301
+ if(len(videofiles) > 0):
302
+ for index,v in enumerate(videofiles):
303
+ if not roop.globals.processing:
304
+ end_processing('Processing stopped!')
305
+ return
306
+ fps = v.fps if v.fps > 0 else util.detect_fps(v.filename)
307
+ if v.endframe == 0:
308
+ v.endframe = get_video_frame_total(v.filename)
309
+
310
+ is_streaming_only = output_method == "Virtual Camera"
311
+ if is_streaming_only == False:
312
+ update_status(f'Creating {os.path.basename(v.finalname)} with {fps} FPS...')
313
+
314
+ start_processing = time()
315
+ if is_streaming_only == False and roop.globals.keep_frames or not use_new_method:
316
+ util.create_temp(v.filename)
317
+ update_status('Extracting frames...')
318
+ ffmpeg.extract_frames(v.filename,v.startframe,v.endframe, fps)
319
+ if not roop.globals.processing:
320
+ end_processing('Processing stopped!')
321
+ return
322
+
323
+ temp_frame_paths = util.get_temp_frame_paths(v.filename)
324
+ process_mgr.run_batch(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads)
325
+ if not roop.globals.processing:
326
+ end_processing('Processing stopped!')
327
+ return
328
+ if roop.globals.wait_after_extraction:
329
+ extract_path = os.path.dirname(temp_frame_paths[0])
330
+ util.open_folder(extract_path)
331
+ input("Press any key to continue...")
332
+ print("Resorting frames to create video")
333
+ util.sort_rename_frames(extract_path)
334
+
335
+ ffmpeg.create_video(v.filename, v.finalname, fps)
336
+ if not roop.globals.keep_frames:
337
+ util.delete_temp_frames(temp_frame_paths[0])
338
+ else:
339
+ if util.has_extension(v.filename, ['gif']):
340
+ skip_audio = True
341
+ else:
342
+ skip_audio = roop.globals.skip_audio
343
+ process_mgr.run_batch_inmem(output_method, v.filename, v.finalname, v.startframe, v.endframe, fps,roop.globals.execution_threads)
344
+
345
+ if not roop.globals.processing:
346
+ end_processing('Processing stopped!')
347
+ return
348
+
349
+ video_file_name = v.finalname
350
+ if os.path.isfile(video_file_name):
351
+ destination = ''
352
+ if util.has_extension(v.filename, ['gif']):
353
+ gifname = util.get_destfilename_from_path(v.filename, roop.globals.output_path, '.gif')
354
+ destination = util.replace_template(gifname, index=index)
355
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
356
+
357
+ update_status('Creating final GIF')
358
+ ffmpeg.create_gif_from_video(video_file_name, destination)
359
+ if os.path.isfile(destination):
360
+ os.remove(video_file_name)
361
+ else:
362
+ skip_audio = roop.globals.skip_audio
363
+ destination = util.replace_template(video_file_name, index=index)
364
+ pathlib.Path(os.path.dirname(destination)).mkdir(parents=True, exist_ok=True)
365
+
366
+ if not skip_audio:
367
+ ffmpeg.restore_audio(video_file_name, v.filename, v.startframe, v.endframe, destination)
368
+ if os.path.isfile(destination):
369
+ os.remove(video_file_name)
370
+ else:
371
+ shutil.move(video_file_name, destination)
372
+
373
+ elif is_streaming_only == False:
374
+ update_status(f'Failed processing {os.path.basename(v.finalname)}!')
375
+ elapsed_time = time() - start_processing
376
+ average_fps = (v.endframe - v.startframe) / elapsed_time
377
+ update_status(f'\nProcessing {os.path.basename(destination)} took {elapsed_time:.2f} secs, {average_fps:.2f} frames/s')
378
+ end_processing('Finished')
379
+
380
+
381
+ def end_processing(msg:str):
382
+ update_status(msg)
383
+ roop.globals.target_folder_path = None
384
+ release_resources()
385
+
386
+
387
+ def destroy() -> None:
388
+ if roop.globals.target_path:
389
+ util.clean_temp(roop.globals.target_path)
390
+ release_resources()
391
+ sys.exit()
392
+
393
+
394
+ def run() -> None:
395
+ parse_args()
396
+ if not pre_check():
397
+ return
398
+ roop.globals.CFG = Settings('config.yaml')
399
+ roop.globals.cuda_device_id = roop.globals.startup_args.cuda_device_id
400
+ roop.globals.execution_threads = roop.globals.CFG.max_threads
401
+ roop.globals.video_encoder = roop.globals.CFG.output_video_codec
402
+ roop.globals.video_quality = roop.globals.CFG.video_quality
403
+ roop.globals.max_memory = roop.globals.CFG.memory_limit if roop.globals.CFG.memory_limit > 0 else None
404
+ if roop.globals.startup_args.server_share:
405
+ roop.globals.CFG.server_share = True
406
+ main.run()
roop/face_util.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ from typing import Any
3
+ import insightface
4
+
5
+ import roop.globals
6
+ from roop.typing import Frame, Face
7
+
8
+ import cv2
9
+ import numpy as np
10
+ from skimage import transform as trans
11
+ from roop.capturer import get_video_frame
12
+ from roop.utilities import resolve_relative_path, conditional_thread_semaphore
13
+
14
+ FACE_ANALYSER = None
15
+ #THREAD_LOCK_ANALYSER = threading.Lock()
16
+ #THREAD_LOCK_SWAPPER = threading.Lock()
17
+ FACE_SWAPPER = None
18
+
19
+
20
+ def get_face_analyser() -> Any:
21
+ global FACE_ANALYSER
22
+
23
+ with conditional_thread_semaphore():
24
+ if FACE_ANALYSER is None or roop.globals.g_current_face_analysis != roop.globals.g_desired_face_analysis:
25
+ model_path = resolve_relative_path('..')
26
+ # removed genderage
27
+ allowed_modules = roop.globals.g_desired_face_analysis
28
+ roop.globals.g_current_face_analysis = roop.globals.g_desired_face_analysis
29
+ if roop.globals.CFG.force_cpu:
30
+ print("Forcing CPU for Face Analysis")
31
+ FACE_ANALYSER = insightface.app.FaceAnalysis(
32
+ name="buffalo_l",
33
+ root=model_path, providers=["CPUExecutionProvider"],allowed_modules=allowed_modules
34
+ )
35
+ else:
36
+ FACE_ANALYSER = insightface.app.FaceAnalysis(
37
+ name="buffalo_l", root=model_path, providers=roop.globals.execution_providers,allowed_modules=allowed_modules
38
+ )
39
+ FACE_ANALYSER.prepare(
40
+ ctx_id=0,
41
+ det_size=(640, 640) if roop.globals.default_det_size else (320, 320),
42
+ )
43
+ return FACE_ANALYSER
44
+
45
+
46
+ def get_first_face(frame: Frame) -> Any:
47
+ try:
48
+ faces = get_face_analyser().get(frame)
49
+ return min(faces, key=lambda x: x.bbox[0])
50
+ # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0]
51
+ except:
52
+ return None
53
+
54
+
55
+ def get_all_faces(frame: Frame) -> Any:
56
+ try:
57
+ faces = get_face_analyser().get(frame)
58
+ return sorted(faces, key=lambda x: x.bbox[0])
59
+ except:
60
+ return None
61
+
62
+
63
+ def extract_face_images(source_filename, video_info, extra_padding=-1.0):
64
+ face_data = []
65
+ source_image = None
66
+
67
+ if video_info[0]:
68
+ frame = get_video_frame(source_filename, video_info[1])
69
+ if frame is not None:
70
+ source_image = frame
71
+ else:
72
+ return face_data
73
+ else:
74
+ source_image = cv2.imdecode(np.fromfile(source_filename, dtype=np.uint8), cv2.IMREAD_COLOR)
75
+
76
+ faces = get_all_faces(source_image)
77
+ if faces is None:
78
+ return face_data
79
+
80
+ i = 0
81
+ for face in faces:
82
+ (startX, startY, endX, endY) = face["bbox"].astype("int")
83
+ startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
84
+ if extra_padding > 0.0:
85
+ if source_image.shape[:2] == (512, 512):
86
+ i += 1
87
+ face_data.append([face, source_image])
88
+ continue
89
+
90
+ found = False
91
+ for i in range(1, 3):
92
+ (startX, startY, endX, endY) = face["bbox"].astype("int")
93
+ startX, endX, startY, endY = clamp_cut_values(startX, endX, startY, endY, source_image)
94
+ cutout_padding = extra_padding
95
+ # top needs extra room for detection
96
+ padding = int((endY - startY) * cutout_padding)
97
+ oldY = startY
98
+ startY -= padding
99
+
100
+ factor = 0.25 if i == 1 else 0.5
101
+ cutout_padding = factor
102
+ padding = int((endY - oldY) * cutout_padding)
103
+ endY += padding
104
+ padding = int((endX - startX) * cutout_padding)
105
+ startX -= padding
106
+ endX += padding
107
+ startX, endX, startY, endY = clamp_cut_values(
108
+ startX, endX, startY, endY, source_image
109
+ )
110
+ face_temp = source_image[startY:endY, startX:endX]
111
+ face_temp = resize_image_keep_content(face_temp)
112
+ testfaces = get_all_faces(face_temp)
113
+ if testfaces is not None and len(testfaces) > 0:
114
+ i += 1
115
+ face_data.append([testfaces[0], face_temp])
116
+ found = True
117
+ break
118
+
119
+ if not found:
120
+ print("No face found after resizing, this shouldn't happen!")
121
+ continue
122
+
123
+ face_temp = source_image[startY:endY, startX:endX]
124
+ if face_temp.size < 1:
125
+ continue
126
+
127
+ i += 1
128
+ face_data.append([face, face_temp])
129
+ return face_data
130
+
131
+
132
+ def clamp_cut_values(startX, endX, startY, endY, image):
133
+ if startX < 0:
134
+ startX = 0
135
+ if endX > image.shape[1]:
136
+ endX = image.shape[1]
137
+ if startY < 0:
138
+ startY = 0
139
+ if endY > image.shape[0]:
140
+ endY = image.shape[0]
141
+ return startX, endX, startY, endY
142
+
143
+
144
+
145
+ def face_offset_top(face: Face, offset):
146
+ face["bbox"][1] += offset
147
+ face["bbox"][3] += offset
148
+ lm106 = face.landmark_2d_106
149
+ add = np.full_like(lm106, [0, offset])
150
+ face["landmark_2d_106"] = lm106 + add
151
+ return face
152
+
153
+
154
+ def resize_image_keep_content(image, new_width=512, new_height=512):
155
+ dim = None
156
+ (h, w) = image.shape[:2]
157
+ if h > w:
158
+ r = new_height / float(h)
159
+ dim = (int(w * r), new_height)
160
+ else:
161
+ # Calculate the ratio of the width and construct the dimensions
162
+ r = new_width / float(w)
163
+ dim = (new_width, int(h * r))
164
+ image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
165
+ (h, w) = image.shape[:2]
166
+ if h == new_height and w == new_width:
167
+ return image
168
+ resize_img = np.zeros(shape=(new_height, new_width, 3), dtype=image.dtype)
169
+ offs = (new_width - w) if h == new_height else (new_height - h)
170
+ startoffs = int(offs // 2) if offs % 2 == 0 else int(offs // 2) + 1
171
+ offs = int(offs // 2)
172
+
173
+ if h == new_height:
174
+ resize_img[0:new_height, startoffs : new_width - offs] = image
175
+ else:
176
+ resize_img[startoffs : new_height - offs, 0:new_width] = image
177
+ return resize_img
178
+
179
+
180
+ def rotate_image_90(image, rotate=True):
181
+ if rotate:
182
+ return np.rot90(image)
183
+ else:
184
+ return np.rot90(image, 1, (1, 0))
185
+
186
+
187
+ def rotate_anticlockwise(frame):
188
+ return rotate_image_90(frame)
189
+
190
+
191
+ def rotate_clockwise(frame):
192
+ return rotate_image_90(frame, False)
193
+
194
+
195
+ def rotate_image_180(image):
196
+ return np.flip(image, 0)
197
+
198
+
199
+ # alignment code from insightface https://github.com/deepinsight/insightface/blob/master/python-package/insightface/utils/face_align.py
200
+
201
+ arcface_dst = np.array(
202
+ [
203
+ [38.2946, 51.6963],
204
+ [73.5318, 51.5014],
205
+ [56.0252, 71.7366],
206
+ [41.5493, 92.3655],
207
+ [70.7299, 92.2041],
208
+ ],
209
+ dtype=np.float32,
210
+ )
211
+
212
+
213
+ """ def estimate_norm(lmk, image_size=112):
214
+ assert lmk.shape == (5, 2)
215
+ if image_size % 112 == 0:
216
+ ratio = float(image_size) / 112.0
217
+ diff_x = 0
218
+ elif image_size % 128 == 0:
219
+ ratio = float(image_size) / 128.0
220
+ diff_x = 8.0 * ratio
221
+ elif image_size % 512 == 0:
222
+ ratio = float(image_size) / 512.0
223
+ diff_x = 32.0 * ratio
224
+
225
+ dst = arcface_dst * ratio
226
+ dst[:, 0] += diff_x
227
+ tform = trans.SimilarityTransform()
228
+ tform.estimate(lmk, dst)
229
+ M = tform.params[0:2, :]
230
+ return M
231
+ """
232
+
233
+ def estimate_norm(lmk, image_size=112):
234
+ if image_size%112==0:
235
+ ratio = float(image_size)/112.0
236
+ diff_x = 0
237
+ else:
238
+ ratio = float(image_size)/128.0
239
+ diff_x = 8.0*ratio
240
+ dst = arcface_dst * ratio
241
+ dst[:,0] += diff_x
242
+
243
+ if image_size == 160:
244
+ dst[:,0] += 0.1
245
+ dst[:,1] += 0.1
246
+ elif image_size == 256:
247
+ dst[:,0] += 0.5
248
+ dst[:,1] += 0.5
249
+ elif image_size == 320:
250
+ dst[:,0] += 0.75
251
+ dst[:,1] += 0.75
252
+ elif image_size == 512:
253
+ dst[:,0] += 1.5
254
+ dst[:,1] += 1.5
255
+
256
+ tform = trans.SimilarityTransform()
257
+ tform.estimate(lmk, dst)
258
+ M = tform.params[0:2, :]
259
+ return M
260
+
261
+
262
+
263
+ # aligned, M = norm_crop2(f[1], face.kps, 512)
264
+ def align_crop(img, landmark, image_size=112, mode="arcface"):
265
+ M = estimate_norm(landmark, image_size)
266
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
267
+ return warped, M
268
+
269
+
270
+ def square_crop(im, S):
271
+ if im.shape[0] > im.shape[1]:
272
+ height = S
273
+ width = int(float(im.shape[1]) / im.shape[0] * S)
274
+ scale = float(S) / im.shape[0]
275
+ else:
276
+ width = S
277
+ height = int(float(im.shape[0]) / im.shape[1] * S)
278
+ scale = float(S) / im.shape[1]
279
+ resized_im = cv2.resize(im, (width, height))
280
+ det_im = np.zeros((S, S, 3), dtype=np.uint8)
281
+ det_im[: resized_im.shape[0], : resized_im.shape[1], :] = resized_im
282
+ return det_im, scale
283
+
284
+
285
+ def transform(data, center, output_size, scale, rotation):
286
+ scale_ratio = scale
287
+ rot = float(rotation) * np.pi / 180.0
288
+ # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
289
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
290
+ cx = center[0] * scale_ratio
291
+ cy = center[1] * scale_ratio
292
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
293
+ t3 = trans.SimilarityTransform(rotation=rot)
294
+ t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2))
295
+ t = t1 + t2 + t3 + t4
296
+ M = t.params[0:2]
297
+ cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0)
298
+ return cropped, M
299
+
300
+
301
+ def trans_points2d(pts, M):
302
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
303
+ for i in range(pts.shape[0]):
304
+ pt = pts[i]
305
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
306
+ new_pt = np.dot(M, new_pt)
307
+ # print('new_pt', new_pt.shape, new_pt)
308
+ new_pts[i] = new_pt[0:2]
309
+
310
+ return new_pts
311
+
312
+
313
+ def trans_points3d(pts, M):
314
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
315
+ # print(scale)
316
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
317
+ for i in range(pts.shape[0]):
318
+ pt = pts[i]
319
+ new_pt = np.array([pt[0], pt[1], 1.0], dtype=np.float32)
320
+ new_pt = np.dot(M, new_pt)
321
+ # print('new_pt', new_pt.shape, new_pt)
322
+ new_pts[i][0:2] = new_pt[0:2]
323
+ new_pts[i][2] = pts[i][2] * scale
324
+
325
+ return new_pts
326
+
327
+
328
+ def trans_points(pts, M):
329
+ if pts.shape[1] == 2:
330
+ return trans_points2d(pts, M)
331
+ else:
332
+ return trans_points3d(pts, M)
333
+
334
+ def create_blank_image(width, height):
335
+ img = np.zeros((height, width, 4), dtype=np.uint8)
336
+ img[:] = [0,0,0,0]
337
+ return img
338
+
roop/ffmpeg_writer.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ FFMPEG_Writer - write set of frames to video file
3
+
4
+ original from
5
+ https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_writer.py
6
+
7
+ removed unnecessary dependencies
8
+
9
+ The MIT License (MIT)
10
+
11
+ Copyright (c) 2015 Zulko
12
+ Copyright (c) 2023 Janvarev Vladislav
13
+ """
14
+
15
+ import os
16
+ import subprocess as sp
17
+
18
+ PIPE = -1
19
+ STDOUT = -2
20
+ DEVNULL = -3
21
+
22
+ FFMPEG_BINARY = "ffmpeg"
23
+
24
+ class FFMPEG_VideoWriter:
25
+ """ A class for FFMPEG-based video writing.
26
+
27
+ A class to write videos using ffmpeg. ffmpeg will write in a large
28
+ choice of formats.
29
+
30
+ Parameters
31
+ -----------
32
+
33
+ filename
34
+ Any filename like 'video.mp4' etc. but if you want to avoid
35
+ complications it is recommended to use the generic extension
36
+ '.avi' for all your videos.
37
+
38
+ size
39
+ Size (width,height) of the output video in pixels.
40
+
41
+ fps
42
+ Frames per second in the output video file.
43
+
44
+ codec
45
+ FFMPEG codec. It seems that in terms of quality the hierarchy is
46
+ 'rawvideo' = 'png' > 'mpeg4' > 'libx264'
47
+ 'png' manages the same lossless quality as 'rawvideo' but yields
48
+ smaller files. Type ``ffmpeg -codecs`` in a terminal to get a list
49
+ of accepted codecs.
50
+
51
+ Note for default 'libx264': by default the pixel format yuv420p
52
+ is used. If the video dimensions are not both even (e.g. 720x405)
53
+ another pixel format is used, and this can cause problem in some
54
+ video readers.
55
+
56
+ audiofile
57
+ Optional: The name of an audio file that will be incorporated
58
+ to the video.
59
+
60
+ preset
61
+ Sets the time that FFMPEG will take to compress the video. The slower,
62
+ the better the compression rate. Possibilities are: ultrafast,superfast,
63
+ veryfast, faster, fast, medium (default), slow, slower, veryslow,
64
+ placebo.
65
+
66
+ bitrate
67
+ Only relevant for codecs which accept a bitrate. "5000k" offers
68
+ nice results in general.
69
+
70
+ """
71
+
72
+ def __init__(self, filename, size, fps, codec="libx265", crf=14, audiofile=None,
73
+ preset="medium", bitrate=None,
74
+ logfile=None, threads=None, ffmpeg_params=None):
75
+
76
+ if logfile is None:
77
+ logfile = sp.PIPE
78
+
79
+ self.filename = filename
80
+ self.codec = codec
81
+ self.ext = self.filename.split(".")[-1]
82
+ w = size[0] - 1 if size[0] % 2 != 0 else size[0]
83
+ h = size[1] - 1 if size[1] % 2 != 0 else size[1]
84
+
85
+
86
+ # order is important
87
+ cmd = [
88
+ FFMPEG_BINARY,
89
+ '-hide_banner',
90
+ '-hwaccel', 'auto',
91
+ '-y',
92
+ '-loglevel', 'error' if logfile == sp.PIPE else 'info',
93
+ '-f', 'rawvideo',
94
+ '-vcodec', 'rawvideo',
95
+ '-s', '%dx%d' % (size[0], size[1]),
96
+ #'-pix_fmt', 'rgba' if withmask else 'rgb24',
97
+ '-pix_fmt', 'bgr24',
98
+ '-r', str(fps),
99
+ '-an', '-i', '-'
100
+ ]
101
+
102
+ if audiofile is not None:
103
+ cmd.extend([
104
+ '-i', audiofile,
105
+ '-acodec', 'copy'
106
+ ])
107
+
108
+ cmd.extend([
109
+ '-vcodec', codec,
110
+ '-crf', str(crf)
111
+ #'-preset', preset,
112
+ ])
113
+ if ffmpeg_params is not None:
114
+ cmd.extend(ffmpeg_params)
115
+ if bitrate is not None:
116
+ cmd.extend([
117
+ '-b', bitrate
118
+ ])
119
+
120
+ # scale to a resolution divisible by 2 if not even
121
+ cmd.extend(['-vf', f'scale={w}:{h}' if w != size[0] or h != size[1] else 'colorspace=bt709:iall=bt601-6-625:fast=1'])
122
+
123
+ if threads is not None:
124
+ cmd.extend(["-threads", str(threads)])
125
+
126
+ cmd.extend([
127
+ '-pix_fmt', 'yuv420p',
128
+
129
+ ])
130
+ cmd.extend([
131
+ filename
132
+ ])
133
+
134
+ test = str(cmd)
135
+ print(test)
136
+
137
+ popen_params = {"stdout": DEVNULL,
138
+ "stderr": logfile,
139
+ "stdin": sp.PIPE}
140
+
141
+ # This was added so that no extra unwanted window opens on windows
142
+ # when the child process is created
143
+ if os.name == "nt":
144
+ popen_params["creationflags"] = 0x08000000 # CREATE_NO_WINDOW
145
+
146
+ self.proc = sp.Popen(cmd, **popen_params)
147
+
148
+
149
+ def write_frame(self, img_array):
150
+ """ Writes one frame in the file."""
151
+ try:
152
+ #if PY3:
153
+ self.proc.stdin.write(img_array.tobytes())
154
+ # else:
155
+ # self.proc.stdin.write(img_array.tostring())
156
+ except IOError as err:
157
+ _, ffmpeg_error = self.proc.communicate()
158
+ error = (str(err) + ("\n\nroop unleashed error: FFMPEG encountered "
159
+ "the following error while writing file %s:"
160
+ "\n\n %s" % (self.filename, str(ffmpeg_error))))
161
+
162
+ if b"Unknown encoder" in ffmpeg_error:
163
+
164
+ error = error+("\n\nThe video export "
165
+ "failed because FFMPEG didn't find the specified "
166
+ "codec for video encoding (%s). Please install "
167
+ "this codec or change the codec when calling "
168
+ "write_videofile. For instance:\n"
169
+ " >>> clip.write_videofile('myvid.webm', codec='libvpx')")%(self.codec)
170
+
171
+ elif b"incorrect codec parameters ?" in ffmpeg_error:
172
+
173
+ error = error+("\n\nThe video export "
174
+ "failed, possibly because the codec specified for "
175
+ "the video (%s) is not compatible with the given "
176
+ "extension (%s). Please specify a valid 'codec' "
177
+ "argument in write_videofile. This would be 'libx264' "
178
+ "or 'mpeg4' for mp4, 'libtheora' for ogv, 'libvpx for webm. "
179
+ "Another possible reason is that the audio codec was not "
180
+ "compatible with the video codec. For instance the video "
181
+ "extensions 'ogv' and 'webm' only allow 'libvorbis' (default) as a"
182
+ "video codec."
183
+ )%(self.codec, self.ext)
184
+
185
+ elif b"encoder setup failed" in ffmpeg_error:
186
+
187
+ error = error+("\n\nThe video export "
188
+ "failed, possibly because the bitrate you specified "
189
+ "was too high or too low for the video codec.")
190
+
191
+ elif b"Invalid encoder type" in ffmpeg_error:
192
+
193
+ error = error + ("\n\nThe video export failed because the codec "
194
+ "or file extension you provided is not a video")
195
+
196
+
197
+ raise IOError(error)
198
+
199
+ def close(self):
200
+ if self.proc:
201
+ self.proc.stdin.close()
202
+ if self.proc.stderr is not None:
203
+ self.proc.stderr.close()
204
+ self.proc.wait()
205
+
206
+ self.proc = None
207
+
208
+ # Support the Context Manager protocol, to ensure that resources are cleaned up.
209
+
210
+ def __enter__(self):
211
+ return self
212
+
213
+ def __exit__(self, exc_type, exc_value, traceback):
214
+ self.close()
215
+
216
+
217
+
218
+
roop/globals.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from settings import Settings
2
+ from typing import List
3
+
4
+ source_path = None
5
+ target_path = None
6
+ output_path = None
7
+ target_folder_path = None
8
+ startup_args = None
9
+
10
+ cuda_device_id = 0
11
+ frame_processors: List[str] = []
12
+ keep_fps = None
13
+ keep_frames = None
14
+ autorotate_faces = None
15
+ vr_mode = None
16
+ skip_audio = None
17
+ wait_after_extraction = None
18
+ many_faces = None
19
+ use_batch = None
20
+ source_face_index = 0
21
+ target_face_index = 0
22
+ face_position = None
23
+ video_encoder = None
24
+ video_quality = None
25
+ max_memory = None
26
+ execution_providers: List[str] = []
27
+ execution_threads = None
28
+ headless = None
29
+ log_level = 'error'
30
+ selected_enhancer = None
31
+ subsample_size = 128
32
+ face_swap_mode = None
33
+ blend_ratio = 0.5
34
+ distance_threshold = 0.65
35
+ default_det_size = True
36
+
37
+ no_face_action = 0
38
+
39
+ processing = False
40
+
41
+ g_current_face_analysis = None
42
+ g_desired_face_analysis = None
43
+
44
+ FACE_ENHANCER = None
45
+
46
+ INPUT_FACESETS = []
47
+ TARGET_FACES = []
48
+
49
+
50
+ IMAGE_CHAIN_PROCESSOR = None
51
+ VIDEO_CHAIN_PROCESSOR = None
52
+ BATCH_IMAGE_CHAIN_PROCESSOR = None
53
+
54
+ CFG: Settings = None
55
+
56
+
roop/metadata.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ name = 'roop unleashed'
2
+ version = '4.4.1'
roop/processors/__pycache__/Enhance_CodeFormer.cpython-310.pyc ADDED
Binary file (2.48 kB). View file
 
roop/processors/__pycache__/Enhance_GFPGAN.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
roop/processors/__pycache__/Enhance_GPEN.cpython-310.pyc ADDED
Binary file (2.2 kB). View file
 
roop/processors/__pycache__/Enhance_RestoreFormerPPlus.cpython-310.pyc ADDED
Binary file (2.4 kB). View file
 
roop/processors/__pycache__/FaceSwapInsightFace.cpython-310.pyc ADDED
Binary file (2.07 kB). View file
 
roop/processors/__pycache__/Frame_Masking.cpython-310.pyc ADDED
Binary file (2.32 kB). View file
 
roop/processors/__pycache__/Mask_Clip2Seg.cpython-310.pyc ADDED
Binary file (2.76 kB). View file
 
roop/processors/__pycache__/Mask_XSeg.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
roop/processors/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (164 Bytes). View file
 
roop/template_parser.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from datetime import datetime
3
+
4
+ template_functions = {
5
+ "timestamp": lambda data: str(int(datetime.now().timestamp())),
6
+ "i": lambda data: data.get("index", False),
7
+ "file": lambda data: data.get("file", False),
8
+ "date": lambda data: datetime.now().strftime("%Y-%m-%d"),
9
+ "time": lambda data: datetime.now().strftime("%H-%M-%S"),
10
+ }
11
+
12
+
13
+ def parse(text: str, data: dict):
14
+ pattern = r"\{([^}]+)\}"
15
+
16
+ matches = re.findall(pattern, text)
17
+
18
+ for match in matches:
19
+ replacement = template_functions[match](data)
20
+ if replacement is not False:
21
+ text = text.replace(f"{{{match}}}", replacement)
22
+
23
+ return text
roop/typing.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from insightface.app.common import Face
4
+ from roop.FaceSet import FaceSet
5
+ import numpy
6
+
7
+ Face = Face
8
+ FaceSet = FaceSet
9
+ Frame = numpy.ndarray[Any, Any]
roop/util_ffmpeg.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import subprocess
4
+ import roop.globals
5
+ import roop.utilities as util
6
+
7
+ from typing import List, Any
8
+
9
+ def run_ffmpeg(args: List[str]) -> bool:
10
+ commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-y', '-loglevel', roop.globals.log_level]
11
+ commands.extend(args)
12
+ print ("Running ffmpeg")
13
+ try:
14
+ subprocess.check_output(commands, stderr=subprocess.STDOUT)
15
+ return True
16
+ except Exception as e:
17
+ print("Running ffmpeg failed! Commandline:")
18
+ print (" ".join(commands))
19
+ return False
20
+
21
+
22
+
23
+ def cut_video(original_video: str, cut_video: str, start_frame: int, end_frame: int, reencode: bool):
24
+ fps = util.detect_fps(original_video)
25
+ start_time = start_frame / fps
26
+ num_frames = end_frame - start_frame
27
+
28
+ if reencode:
29
+ run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-c:v', roop.globals.video_encoder, '-c:a', 'aac', '-frames:v', str(num_frames), cut_video])
30
+ else:
31
+ run_ffmpeg(['-ss', format(start_time, ".2f"), '-i', original_video, '-frames:v', str(num_frames), '-c:v' ,'copy','-c:a' ,'copy', cut_video])
32
+
33
+ def join_videos(videos: List[str], dest_filename: str, simple: bool):
34
+ if simple:
35
+ txtfilename = util.resolve_relative_path('../temp')
36
+ txtfilename = os.path.join(txtfilename, 'joinvids.txt')
37
+ with open(txtfilename, "w", encoding="utf-8") as f:
38
+ for v in videos:
39
+ v = v.replace('\\', '/')
40
+ f.write(f"file {v}\n")
41
+ commands = ['-f', 'concat', '-safe', '0', '-i', f'{txtfilename}', '-vcodec', 'copy', f'{dest_filename}']
42
+ run_ffmpeg(commands)
43
+
44
+ else:
45
+ inputs = []
46
+ filter = ''
47
+ for i,v in enumerate(videos):
48
+ inputs.append('-i')
49
+ inputs.append(v)
50
+ filter += f'[{i}:v:0][{i}:a:0]'
51
+ run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
52
+
53
+ # filter += f'[{i}:v:0][{i}:a:0]'
54
+ # run_ffmpeg([" ".join(inputs), '-filter_complex', f'"{filter}concat=n={len(videos)}:v=1:a=1[outv][outa]"', '-map', '"[outv]"', '-map', '"[outa]"', dest_filename])
55
+
56
+
57
+
58
+ def extract_frames(target_path : str, trim_frame_start, trim_frame_end, fps : float) -> bool:
59
+ util.create_temp(target_path)
60
+ temp_directory_path = util.get_temp_directory_path(target_path)
61
+ commands = ['-i', target_path, '-q:v', '1', '-pix_fmt', 'rgb24', ]
62
+ if trim_frame_start is not None and trim_frame_end is not None:
63
+ commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
64
+ commands.extend(['-vsync', '0', os.path.join(temp_directory_path, '%06d.' + roop.globals.CFG.output_image_format)])
65
+ return run_ffmpeg(commands)
66
+
67
+
68
+ def create_video(target_path: str, dest_filename: str, fps: float = 24.0, temp_directory_path: str = None) -> None:
69
+ if temp_directory_path is None:
70
+ temp_directory_path = util.get_temp_directory_path(target_path)
71
+ run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, f'%06d.{roop.globals.CFG.output_image_format}'), '-c:v', roop.globals.video_encoder, '-crf', str(roop.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', dest_filename])
72
+ return dest_filename
73
+
74
+
75
+ def create_gif_from_video(video_path: str, gif_path):
76
+ from roop.capturer import get_video_frame, release_video
77
+
78
+ fps = util.detect_fps(video_path)
79
+ frame = get_video_frame(video_path)
80
+ release_video()
81
+
82
+ scalex = frame.shape[0]
83
+ scaley = frame.shape[1]
84
+
85
+ if scalex >= scaley:
86
+ scaley = -1
87
+ else:
88
+ scalex = -1
89
+
90
+ run_ffmpeg(['-i', video_path, '-vf', f'fps={fps},scale={int(scalex)}:{int(scaley)}:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1][p]paletteuse', '-loop', '0', gif_path])
91
+
92
+
93
+
94
+ def create_video_from_gif(gif_path: str, output_path):
95
+ fps = util.detect_fps(gif_path)
96
+ filter = """scale='trunc(in_w/2)*2':'trunc(in_h/2)*2',format=yuv420p,fps=10"""
97
+ run_ffmpeg(['-i', gif_path, '-vf', f'"{filter}"', '-movflags', '+faststart', '-shortest', output_path])
98
+
99
+
100
+ def repair_video(original_video: str, final_video : str):
101
+ run_ffmpeg(['-i', original_video, '-movflags', 'faststart', '-acodec', 'copy', '-vcodec', 'copy', final_video])
102
+
103
+
104
+ def restore_audio(intermediate_video: str, original_video: str, trim_frame_start, trim_frame_end, final_video : str) -> None:
105
+ fps = util.detect_fps(original_video)
106
+ commands = [ '-i', intermediate_video ]
107
+ if trim_frame_start is None and trim_frame_end is None:
108
+ commands.extend([ '-c:a', 'copy' ])
109
+ else:
110
+ # if trim_frame_start is not None:
111
+ # start_time = trim_frame_start / fps
112
+ # commands.extend([ '-ss', format(start_time, ".2f")])
113
+ # else:
114
+ # commands.extend([ '-ss', '0' ])
115
+ # if trim_frame_end is not None:
116
+ # end_time = trim_frame_end / fps
117
+ # commands.extend([ '-to', format(end_time, ".2f")])
118
+ # commands.extend([ '-c:a', 'aac' ])
119
+ if trim_frame_start is not None:
120
+ start_time = trim_frame_start / fps
121
+ commands.extend([ '-ss', format(start_time, ".2f")])
122
+ else:
123
+ commands.extend([ '-ss', '0' ])
124
+ if trim_frame_end is not None:
125
+ end_time = trim_frame_end / fps
126
+ commands.extend([ '-to', format(end_time, ".2f")])
127
+ commands.extend([ '-i', original_video, "-c", "copy" ])
128
+
129
+ commands.extend([ '-map', '0:v:0', '-map', '1:a:0?', '-shortest', final_video ])
130
+ run_ffmpeg(commands)
roop/utilities.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import mimetypes
3
+ import os
4
+ import platform
5
+ import shutil
6
+ import ssl
7
+ import subprocess
8
+ import sys
9
+ import urllib
10
+ import torch
11
+ import gradio
12
+ import tempfile
13
+ import cv2
14
+ import zipfile
15
+ import traceback
16
+ import threading
17
+ import threading
18
+ import random
19
+
20
+ from typing import Union, Any
21
+ from contextlib import nullcontext
22
+
23
+ from pathlib import Path
24
+ from typing import List, Any
25
+ from tqdm import tqdm
26
+ from scipy.spatial import distance
27
+
28
+ import roop.template_parser as template_parser
29
+
30
+ import roop.globals
31
+
32
+ TEMP_FILE = "temp.mp4"
33
+ TEMP_DIRECTORY = "temp"
34
+
35
+ THREAD_SEMAPHORE = threading.Semaphore()
36
+ NULL_CONTEXT = nullcontext()
37
+
38
+
39
+ # monkey patch ssl for mac
40
+ if platform.system().lower() == "darwin":
41
+ ssl._create_default_https_context = ssl._create_unverified_context
42
+
43
+
44
+ # https://github.com/facefusion/facefusion/blob/master/facefusion
45
+ def detect_fps(target_path: str) -> float:
46
+ fps = 24.0
47
+ cap = cv2.VideoCapture(target_path)
48
+ if cap.isOpened():
49
+ fps = cap.get(cv2.CAP_PROP_FPS)
50
+ cap.release()
51
+ return fps
52
+
53
+
54
+ # Gradio wants Images in RGB
55
+ def convert_to_gradio(image):
56
+ if image is None:
57
+ return None
58
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
59
+
60
+
61
+ def sort_filenames_ignore_path(filenames):
62
+ """Sorts a list of filenames containing a complete path by their filename,
63
+ while retaining their original path.
64
+
65
+ Args:
66
+ filenames: A list of filenames containing a complete path.
67
+
68
+ Returns:
69
+ A sorted list of filenames containing a complete path.
70
+ """
71
+ filename_path_tuples = [
72
+ (os.path.split(filename)[1], filename) for filename in filenames
73
+ ]
74
+ sorted_filename_path_tuples = sorted(filename_path_tuples, key=lambda x: x[0])
75
+ return [
76
+ filename_path_tuple[1] for filename_path_tuple in sorted_filename_path_tuples
77
+ ]
78
+
79
+
80
+ def sort_rename_frames(path: str):
81
+ filenames = os.listdir(path)
82
+ filenames.sort()
83
+ for i in range(len(filenames)):
84
+ of = os.path.join(path, filenames[i])
85
+ newidx = i + 1
86
+ new_filename = os.path.join(
87
+ path, f"{newidx:06d}." + roop.globals.CFG.output_image_format
88
+ )
89
+ os.rename(of, new_filename)
90
+
91
+
92
+ def get_temp_frame_paths(target_path: str) -> List[str]:
93
+ temp_directory_path = get_temp_directory_path(target_path)
94
+ return glob.glob(
95
+ (
96
+ os.path.join(
97
+ glob.escape(temp_directory_path),
98
+ f"*.{roop.globals.CFG.output_image_format}",
99
+ )
100
+ )
101
+ )
102
+
103
+
104
+ def get_temp_directory_path(target_path: str) -> str:
105
+ target_name, _ = os.path.splitext(os.path.basename(target_path))
106
+ target_directory_path = os.path.dirname(target_path)
107
+ return os.path.join(target_directory_path, TEMP_DIRECTORY, target_name)
108
+
109
+
110
+ def get_temp_output_path(target_path: str) -> str:
111
+ temp_directory_path = get_temp_directory_path(target_path)
112
+ return os.path.join(temp_directory_path, TEMP_FILE)
113
+
114
+
115
+ def normalize_output_path(source_path: str, target_path: str, output_path: str) -> Any:
116
+ if source_path and target_path:
117
+ source_name, _ = os.path.splitext(os.path.basename(source_path))
118
+ target_name, target_extension = os.path.splitext(os.path.basename(target_path))
119
+ if os.path.isdir(output_path):
120
+ return os.path.join(
121
+ output_path, source_name + "-" + target_name + target_extension
122
+ )
123
+ return output_path
124
+
125
+
126
+ def get_destfilename_from_path(
127
+ srcfilepath: str, destfilepath: str, extension: str
128
+ ) -> str:
129
+ fn, ext = os.path.splitext(os.path.basename(srcfilepath))
130
+ if "." in extension:
131
+ return os.path.join(destfilepath, f"{fn}{extension}")
132
+ return os.path.join(destfilepath, f"{fn}{extension}{ext}")
133
+
134
+
135
+ def replace_template(file_path: str, index: int = 0) -> str:
136
+ fn, ext = os.path.splitext(os.path.basename(file_path))
137
+
138
+ # Remove the "__temp" placeholder that was used as a temporary filename
139
+ fn = fn.replace("__temp", "")
140
+
141
+ template = roop.globals.CFG.output_template
142
+ replaced_filename = template_parser.parse(
143
+ template, {"index": str(index), "file": fn}
144
+ )
145
+
146
+ return os.path.join(roop.globals.output_path, f"{replaced_filename}{ext}")
147
+
148
+
149
+ def create_temp(target_path: str) -> None:
150
+ temp_directory_path = get_temp_directory_path(target_path)
151
+ Path(temp_directory_path).mkdir(parents=True, exist_ok=True)
152
+
153
+
154
+ def move_temp(target_path: str, output_path: str) -> None:
155
+ temp_output_path = get_temp_output_path(target_path)
156
+ if os.path.isfile(temp_output_path):
157
+ if os.path.isfile(output_path):
158
+ os.remove(output_path)
159
+ shutil.move(temp_output_path, output_path)
160
+
161
+
162
+ def clean_temp(target_path: str) -> None:
163
+ temp_directory_path = get_temp_directory_path(target_path)
164
+ parent_directory_path = os.path.dirname(temp_directory_path)
165
+ if not roop.globals.keep_frames and os.path.isdir(temp_directory_path):
166
+ shutil.rmtree(temp_directory_path)
167
+ if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
168
+ os.rmdir(parent_directory_path)
169
+
170
+
171
+ def delete_temp_frames(filename: str) -> None:
172
+ dir = os.path.dirname(os.path.dirname(filename))
173
+ shutil.rmtree(dir)
174
+
175
+
176
+ def has_image_extension(image_path: str) -> bool:
177
+ return image_path.lower().endswith(("png", "jpg", "jpeg", "webp"))
178
+
179
+
180
+ def has_extension(filepath: str, extensions: List[str]) -> bool:
181
+ return filepath.lower().endswith(tuple(extensions))
182
+
183
+
184
+ def is_image(image_path: str) -> bool:
185
+ if image_path and os.path.isfile(image_path):
186
+ if image_path.endswith(".webp"):
187
+ return True
188
+ mimetype, _ = mimetypes.guess_type(image_path)
189
+ return bool(mimetype and mimetype.startswith("image/"))
190
+ return False
191
+
192
+
193
+ def is_video(video_path: str) -> bool:
194
+ if video_path and os.path.isfile(video_path):
195
+ mimetype, _ = mimetypes.guess_type(video_path)
196
+ return bool(mimetype and mimetype.startswith("video/"))
197
+ return False
198
+
199
+
200
+ def conditional_download(download_directory_path: str, urls: List[str]) -> None:
201
+ if not os.path.exists(download_directory_path):
202
+ os.makedirs(download_directory_path)
203
+ for url in urls:
204
+ download_file_path = os.path.join(
205
+ download_directory_path, os.path.basename(url)
206
+ )
207
+ if not os.path.exists(download_file_path):
208
+ request = urllib.request.urlopen(url) # type: ignore[attr-defined]
209
+ total = int(request.headers.get("Content-Length", 0))
210
+ with tqdm(
211
+ total=total,
212
+ desc=f"Downloading {url}",
213
+ unit="B",
214
+ unit_scale=True,
215
+ unit_divisor=1024,
216
+ ) as progress:
217
+ urllib.request.urlretrieve(url, download_file_path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
218
+
219
+
220
+ def get_local_files_from_folder(folder: str) -> List[str]:
221
+ if not os.path.exists(folder) or not os.path.isdir(folder):
222
+ return None
223
+ files = [
224
+ os.path.join(folder, f)
225
+ for f in os.listdir(folder)
226
+ if os.path.isfile(os.path.join(folder, f))
227
+ ]
228
+ return files
229
+
230
+
231
+ def resolve_relative_path(path: str) -> str:
232
+ return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
233
+
234
+
235
+ def get_device() -> str:
236
+ if len(roop.globals.execution_providers) < 1:
237
+ roop.globals.execution_providers = ["CPUExecutionProvider"]
238
+
239
+ prov = roop.globals.execution_providers[0]
240
+ if "CoreMLExecutionProvider" in prov:
241
+ return "mps"
242
+ if "CUDAExecutionProvider" in prov or "ROCMExecutionProvider" in prov:
243
+ return "cuda"
244
+ if "OpenVINOExecutionProvider" in prov:
245
+ return "mkl"
246
+ return "cpu"
247
+
248
+
249
+ def str_to_class(module_name, class_name) -> Any:
250
+ from importlib import import_module
251
+
252
+ class_ = None
253
+ try:
254
+ module_ = import_module(module_name)
255
+ try:
256
+ class_ = getattr(module_, class_name)()
257
+ except AttributeError:
258
+ print(f"Class {class_name} does not exist")
259
+ except ImportError:
260
+ print(f"Module {module_name} does not exist")
261
+ return class_
262
+
263
+ def is_installed(name:str) -> bool:
264
+ return shutil.which(name);
265
+
266
+ # Taken from https://stackoverflow.com/a/68842705
267
+ def get_platform() -> str:
268
+ if sys.platform == "linux":
269
+ try:
270
+ proc_version = open("/proc/version").read()
271
+ if "Microsoft" in proc_version:
272
+ return "wsl"
273
+ except:
274
+ pass
275
+ return sys.platform
276
+
277
+ def open_with_default_app(filename:str):
278
+ if filename == None:
279
+ return
280
+ platform = get_platform()
281
+ if platform == "darwin":
282
+ subprocess.call(("open", filename))
283
+ elif platform in ["win64", "win32"]: os.startfile(filename.replace("/", "\\"))
284
+ elif platform == "wsl":
285
+ subprocess.call("cmd.exe /C start".split() + [filename])
286
+ else: # linux variants
287
+ subprocess.call("xdg-open", filename)
288
+
289
+
290
+ def prepare_for_batch(target_files) -> str:
291
+ print("Preparing temp files")
292
+ tempfolder = os.path.join(tempfile.gettempdir(), "rooptmp")
293
+ if os.path.exists(tempfolder):
294
+ shutil.rmtree(tempfolder)
295
+ Path(tempfolder).mkdir(parents=True, exist_ok=True)
296
+ for f in target_files:
297
+ newname = os.path.basename(f.name)
298
+ shutil.move(f.name, os.path.join(tempfolder, newname))
299
+ return tempfolder
300
+
301
+
302
+ def zip(files, zipname):
303
+ with zipfile.ZipFile(zipname, "w") as zip_file:
304
+ for f in files:
305
+ zip_file.write(f, os.path.basename(f))
306
+
307
+
308
+ def unzip(zipfilename: str, target_path: str):
309
+ with zipfile.ZipFile(zipfilename, "r") as zip_file:
310
+ zip_file.extractall(target_path)
311
+
312
+
313
+ def mkdir_with_umask(directory):
314
+ oldmask = os.umask(0)
315
+ # mode needs octal
316
+ os.makedirs(directory, mode=0o775, exist_ok=True)
317
+ os.umask(oldmask)
318
+
319
+
320
+ def open_folder(path: str):
321
+ platform = get_platform()
322
+ try:
323
+ if platform == "darwin":
324
+ subprocess.call(("open", path))
325
+ elif platform in ["win64", "win32"]:
326
+ open_with_default_app(path)
327
+ elif platform == "wsl":
328
+ subprocess.call("cmd.exe /C start".split() + [path])
329
+ else: # linux variants
330
+ subprocess.Popen(["xdg-open", path])
331
+ except Exception as e:
332
+ traceback.print_exc()
333
+ pass
334
+ # import webbrowser
335
+ # webbrowser.open(url)
336
+
337
+
338
+ def create_version_html() -> str:
339
+ python_version = ".".join([str(x) for x in sys.version_info[0:3]])
340
+ versions_html = f"""
341
+ python: <span title="{sys.version}">{python_version}</span>
342
+
343
+ torch: {getattr(torch, '__long_version__',torch.__version__)}
344
+
345
+ gradio: {gradio.__version__}
346
+ """
347
+ return versions_html
348
+
349
+
350
+ def compute_cosine_distance(emb1, emb2) -> float:
351
+ return distance.cosine(emb1, emb2)
352
+
353
+ def has_cuda_device():
354
+ return torch.cuda is not None and torch.cuda.is_available()
355
+
356
+
357
+ def print_cuda_info():
358
+ try:
359
+ print(f'Number of CUDA devices: {torch.cuda.device_count()} Currently used Id: {torch.cuda.current_device()} Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}')
360
+ except:
361
+ print('No CUDA device found!')
362
+
363
+ def clean_dir(path: str):
364
+ contents = os.listdir(path)
365
+ for item in contents:
366
+ item_path = os.path.join(path, item)
367
+ try:
368
+ if os.path.isfile(item_path):
369
+ os.remove(item_path)
370
+ elif os.path.isdir(item_path):
371
+ shutil.rmtree(item_path)
372
+ except Exception as e:
373
+ print(e)
374
+
375
+
376
+ def conditional_thread_semaphore() -> Union[Any, Any]:
377
+ if 'DmlExecutionProvider' in roop.globals.execution_providers or 'ROCMExecutionProvider' in roop.globals.execution_providers:
378
+ return THREAD_SEMAPHORE
379
+ return NULL_CONTEXT
380
+
381
+ def shuffle_array(arr):
382
+ """
383
+ Shuffles the given array in place using the Fisher-Yates shuffle algorithm.
384
+
385
+ Args:
386
+ arr: The array to be shuffled.
387
+
388
+ Returns:
389
+ None. The array is shuffled in place.
390
+ """
391
+ for i in range(len(arr) - 1, 0, -1):
392
+ j = random.randint(0, i)
393
+ arr[i], arr[j] = arr[j], arr[i]
roop/virtualcam.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import roop.globals
3
+ import ui.globals
4
+ import pyvirtualcam
5
+ import threading
6
+ import platform
7
+
8
+
9
+ cam_active = False
10
+ cam_thread = None
11
+ vcam = None
12
+
13
+ def virtualcamera(swap_model, streamobs, use_xseg, use_mouthrestore, cam_num,width,height):
14
+ from roop.ProcessOptions import ProcessOptions
15
+ from roop.core import live_swap, get_processing_plugins
16
+
17
+ global cam_active
18
+
19
+ #time.sleep(2)
20
+ print('Starting capture')
21
+ cap = cv2.VideoCapture(cam_num, cv2.CAP_DSHOW if platform.system() != 'Darwin' else cv2.CAP_AVFOUNDATION)
22
+ if not cap.isOpened():
23
+ print("Cannot open camera")
24
+ cap.release()
25
+ del cap
26
+ return
27
+
28
+ pref_width = width
29
+ pref_height = height
30
+ pref_fps_in = 30
31
+ cap.set(cv2.CAP_PROP_FRAME_WIDTH, pref_width)
32
+ cap.set(cv2.CAP_PROP_FRAME_HEIGHT, pref_height)
33
+ cap.set(cv2.CAP_PROP_FPS, pref_fps_in)
34
+ cam_active = True
35
+
36
+ # native format UYVY
37
+
38
+ cam = None
39
+ if streamobs:
40
+ print('Detecting virtual cam devices')
41
+ cam = pyvirtualcam.Camera(width=pref_width, height=pref_height, fps=pref_fps_in, fmt=pyvirtualcam.PixelFormat.BGR, print_fps=False)
42
+ if cam:
43
+ print(f'Using virtual camera: {cam.device}')
44
+ print(f'Using {cam.native_fmt}')
45
+ else:
46
+ print(f'Not streaming to virtual camera!')
47
+ subsample_size = roop.globals.subsample_size
48
+
49
+
50
+ options = ProcessOptions(swap_model, get_processing_plugins("mask_xseg" if use_xseg else None), roop.globals.distance_threshold, roop.globals.blend_ratio,
51
+ "all", 0, None, None, 1, subsample_size, False, use_mouthrestore)
52
+ while cam_active:
53
+ ret, frame = cap.read()
54
+ if not ret:
55
+ break
56
+
57
+ if len(roop.globals.INPUT_FACESETS) > 0:
58
+ frame = live_swap(frame, options)
59
+ if cam:
60
+ cam.send(frame)
61
+ cam.sleep_until_next_frame()
62
+ ui.globals.ui_camera_frame = frame
63
+
64
+ if cam:
65
+ cam.close()
66
+ cap.release()
67
+ print('Camera stopped')
68
+
69
+
70
+
71
+ def start_virtual_cam(swap_model, streamobs, use_xseg, use_mouthrestore, cam_number, resolution):
72
+ global cam_thread, cam_active
73
+
74
+ if not cam_active:
75
+ width, height = map(int, resolution.split('x'))
76
+ cam_thread = threading.Thread(target=virtualcamera, args=[swap_model, streamobs, use_xseg, use_mouthrestore, cam_number, width, height])
77
+ cam_thread.start()
78
+
79
+
80
+
81
+ def stop_virtual_cam():
82
+ global cam_active, cam_thread
83
+
84
+ if cam_active:
85
+ cam_active = False
86
+ cam_thread.join()
87
+
88
+
roop/vr_util.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ # VR Lense Distortion
5
+ # Taken from https://github.com/g0kuvonlange/vrswap
6
+
7
+
8
+ def get_perspective(img, FOV, THETA, PHI, height, width):
9
+ #
10
+ # THETA is left/right angle, PHI is up/down angle, both in degree
11
+ #
12
+ [orig_width, orig_height, _] = img.shape
13
+ equ_h = orig_height
14
+ equ_w = orig_width
15
+ equ_cx = (equ_w - 1) / 2.0
16
+ equ_cy = (equ_h - 1) / 2.0
17
+
18
+ wFOV = FOV
19
+ hFOV = float(height) / width * wFOV
20
+
21
+ w_len = np.tan(np.radians(wFOV / 2.0))
22
+ h_len = np.tan(np.radians(hFOV / 2.0))
23
+
24
+ x_map = np.ones([height, width], np.float32)
25
+ y_map = np.tile(np.linspace(-w_len, w_len, width), [height, 1])
26
+ z_map = -np.tile(np.linspace(-h_len, h_len, height), [width, 1]).T
27
+
28
+ D = np.sqrt(x_map**2 + y_map**2 + z_map**2)
29
+ xyz = np.stack((x_map, y_map, z_map), axis=2) / np.repeat(
30
+ D[:, :, np.newaxis], 3, axis=2
31
+ )
32
+
33
+ y_axis = np.array([0.0, 1.0, 0.0], np.float32)
34
+ z_axis = np.array([0.0, 0.0, 1.0], np.float32)
35
+ [R1, _] = cv2.Rodrigues(z_axis * np.radians(THETA))
36
+ [R2, _] = cv2.Rodrigues(np.dot(R1, y_axis) * np.radians(-PHI))
37
+
38
+ xyz = xyz.reshape([height * width, 3]).T
39
+ xyz = np.dot(R1, xyz)
40
+ xyz = np.dot(R2, xyz).T
41
+ lat = np.arcsin(xyz[:, 2])
42
+ lon = np.arctan2(xyz[:, 1], xyz[:, 0])
43
+
44
+ lon = lon.reshape([height, width]) / np.pi * 180
45
+ lat = -lat.reshape([height, width]) / np.pi * 180
46
+
47
+ lon = lon / 180 * equ_cx + equ_cx
48
+ lat = lat / 90 * equ_cy + equ_cy
49
+
50
+ persp = cv2.remap(
51
+ img,
52
+ lon.astype(np.float32),
53
+ lat.astype(np.float32),
54
+ cv2.INTER_CUBIC,
55
+ borderMode=cv2.BORDER_WRAP,
56
+ )
57
+ return persp