Spaces:
Sleeping
Sleeping
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb. | |
# %% auto 0 | |
__all__ = ['title', 'description', 'learners', 'models', 'image', 'model', 'label', 'example_images', 'example_models', 'intf', | |
'classify_image'] | |
# %% app.ipynb 1 | |
from fastai.vision.all import * | |
import gradio as gr | |
title = "FastAI - Big Cats Classifier" | |
description = "Classify big cats using all Resnet models available pre-trained in FastAI" | |
# %% app.ipynb 2 | |
learners = { | |
"resnet-18" : 'models/resnet18-model.pkl', | |
"resnet-34" : 'models/resnet34-model.pkl', | |
"resnet-50" : 'models/resnet50-model.pkl', | |
"resnet-101": 'models/resnet101-model.pkl', | |
"resnet-152": 'models/resnet152-model.pkl' | |
} | |
models = list(learners.keys()) | |
# %% app.ipynb 3 | |
def classify_image(img, model_file="resnet-101"): | |
learn = load_learner(learners[model_file]) | |
pred,idx,probs = learn.predict(img) | |
print(pred, idx, probs) | |
return dict(zip(learn.dls.vocab, map(float, probs))) | |
# %% app.ipynb 5 | |
image = gr.inputs.Image(shape=(192.192)) | |
model = gr.inputs.Dropdown(choices=models) | |
label = gr.outputs.Label() | |
example_images = [ 'cheetah.jpg', 'jaguar.jpg', 'tiger.jpg', 'cougar.jpg', 'lion.jpg', 'african leopard.jpg', 'clouded leopard.jpg', 'snow leopard.jpg' ] | |
example_models = [] #list(learners.values()) | |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=example_images, title=title, description=description ) | |
if __name__ == "__main__": | |
intf.launch(debug=True, inline=False) | |