Update app.py
Browse files
app.py
CHANGED
@@ -54,26 +54,27 @@ def query_flight_data(geo_df, question):
|
|
54 |
|
55 |
table_data = {
|
56 |
"icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
|
57 |
-
"callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(),
|
58 |
-
"origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(),
|
59 |
-
"time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
60 |
-
"last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
61 |
-
"longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
62 |
-
"latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
63 |
-
"baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
64 |
-
"on_ground": geo_df["on_ground"].astype(str).iloc[:].tolist(), # Assuming on_ground is boolean or categorical
|
65 |
-
"velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
66 |
-
"true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
67 |
-
"vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
68 |
-
"sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(), # Assuming sensors can be None
|
69 |
-
"geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
70 |
-
"squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(), # Assuming squawk can be None
|
71 |
-
"spi": geo_df["spi"].astype(str).iloc[:].tolist(), # Assuming spi is boolean or categorical
|
72 |
-
"position_source": geo_df["position_source"].astype(str).iloc[:].tolist(), # Assuming position_source is categorical
|
73 |
-
"time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
|
74 |
-
"geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist() # Assuming geometry can be None
|
75 |
}
|
76 |
|
|
|
77 |
# Construct the payload
|
78 |
payload = {
|
79 |
"inputs": {
|
|
|
54 |
|
55 |
table_data = {
|
56 |
"icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
|
57 |
+
"callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
58 |
+
"origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
|
59 |
+
"time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
60 |
+
"last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
61 |
+
"longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
62 |
+
"latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
63 |
+
"baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
64 |
+
"on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
|
65 |
+
"velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
66 |
+
"true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
67 |
+
"vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
68 |
+
"sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
|
69 |
+
"geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
70 |
+
"squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
|
71 |
+
"spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
|
72 |
+
"position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
|
73 |
+
"time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
|
74 |
+
"geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
|
75 |
}
|
76 |
|
77 |
+
|
78 |
# Construct the payload
|
79 |
payload = {
|
80 |
"inputs": {
|