ashok2216 commited on
Commit
1f99747
·
verified ·
1 Parent(s): 10930f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -54,26 +54,27 @@ def query_flight_data(geo_df, question):
54
 
55
  table_data = {
56
  "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
57
- "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(),
58
- "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(),
59
- "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
60
- "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
61
- "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
62
- "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
63
- "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
64
- "on_ground": geo_df["on_ground"].astype(str).iloc[:].tolist(), # Assuming on_ground is boolean or categorical
65
- "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
66
- "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
67
- "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
68
- "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(), # Assuming sensors can be None
69
- "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
70
- "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist(), # Assuming squawk can be None
71
- "spi": geo_df["spi"].astype(str).iloc[:].tolist(), # Assuming spi is boolean or categorical
72
- "position_source": geo_df["position_source"].astype(str).iloc[:].tolist(), # Assuming position_source is categorical
73
- "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:].tolist(),
74
- "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:].tolist() # Assuming geometry can be None
75
  }
76
 
 
77
  # Construct the payload
78
  payload = {
79
  "inputs": {
 
54
 
55
  table_data = {
56
  "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
57
+ "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
58
+ "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
59
+ "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
60
+ "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
61
+ "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
62
+ "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
63
+ "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
64
+ "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
65
+ "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
66
+ "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
67
+ "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
68
+ "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
69
+ "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
70
+ "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
71
+ "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
72
+ "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
73
+ "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
74
+ "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
75
  }
76
 
77
+
78
  # Construct the payload
79
  payload = {
80
  "inputs": {