ash-98 commited on
Commit
b8f4692
·
1 Parent(s): 24a0949
Files changed (1) hide show
  1. app.py +100 -22
app.py CHANGED
@@ -1,10 +1,10 @@
1
  import streamlit as st
2
  import pandas as pd
3
 
4
- st.set_page_config(page_title="Cyber Benchmark Hub: SECQA Leaderboard", layout="wide")
 
 
5
 
6
- st.title("Cyber Benchmark Hub: SECQA Leaderboard")
7
- st.markdown("#### [View the SECQA Dataset](https://huggingface.co/datasets/zefang-liu/secqa)")
8
 
9
  with st.sidebar:
10
  st.image("https://cdn.prod.website-files.com/630f558f2a15ca1e88a2f774/631f1436ad7a0605fecc5e15_Logo.svg", use_container_width=True)
@@ -34,6 +34,37 @@ with st.sidebar:
34
  }, index=["Temperature", "n", "Presence Penalty", "Top_p", "Frequency Penalty"])
35
  st.table(test_params)
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  # Determine file path based on dataset choice.
38
  # For now, if dataset_choice is "secQA", we use "Benchmark.csv"
39
  if dataset_choice == "secQA":
@@ -89,22 +120,69 @@ df_filtered = df_filtered.sort_values("Accuracy", ascending=False).reset_index(d
89
  df_filtered['Rank'] = df_filtered['Accuracy'].rank(method='dense', ascending=False).astype(int)
90
  df_filtered = df_filtered[['Rank', 'Model', 'Type', 'Accuracy']]
91
 
92
- # Use columns to display leaderboard and model details side-by-side
93
- col1, col2 = st.columns([2, 1])
94
-
95
- with col1:
96
- st.subheader(f"Leaderboard for {dataset_choice.upper()} Version {dataset_version}")
97
- st.dataframe(df_filtered.style.hide(axis='index'))
98
-
99
- with col2:
100
- st.subheader("Model Details")
101
- selected_model = st.selectbox("Select a Model", df_filtered["Model"].tolist())
102
- model_details = df_filtered[df_filtered["Model"] == selected_model].iloc[0]
103
- st.write(f"**Model:** {model_details['Model']}")
104
- st.write(f"**Type:** {model_details['Type']}")
105
- st.write(f"**Accuracy:** {model_details['Accuracy']:.2%}")
106
- st.write(f"**Rank:** {model_details['Rank']}")
107
-
108
- # Footer
109
- st.markdown("---")
110
- st.info("More dataset benchmarks will be added to this hub in the future.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
 
4
+ st.set_page_config(page_title="Cyber Benchmark Hub: Leaderboard", layout="wide")
5
+
6
+ st.title("Cyber Benchmark Hub: Leaderboard")
7
 
 
 
8
 
9
  with st.sidebar:
10
  st.image("https://cdn.prod.website-files.com/630f558f2a15ca1e88a2f774/631f1436ad7a0605fecc5e15_Logo.svg", use_container_width=True)
 
34
  }, index=["Temperature", "n", "Presence Penalty", "Top_p", "Frequency Penalty"])
35
  st.table(test_params)
36
 
37
+ # Function to estimate random baseline accuracy for MCQ datasets
38
+ def estimate_random_accuracy(questions):
39
+ """
40
+ Estimates the average accuracy when answering questions randomly.
41
+
42
+ Args:
43
+ questions: List of tuples where each tuple is (question_id, num_choices)
44
+
45
+ Returns:
46
+ The estimated average accuracy (probability of correct answers)
47
+ """
48
+ if not questions:
49
+ return 0.0
50
+
51
+ total_probability = 0.0
52
+ for question_id, num_choices in questions:
53
+ probability = 1.0 / num_choices
54
+ total_probability += probability
55
+
56
+ average_accuracy = total_probability / len(questions)
57
+ return average_accuracy
58
+
59
+ # For the SECQA dataset we assume each question has 4 choices.
60
+ # According to the dataset card, there are 242 questions.
61
+ total_questions = 242
62
+ questionnaire = [(1, 4), (2, 1), (3, 4), (4, 2), (5, 3), (6, 3), (7, 4), (8, 2), (9, 4), (10, 2), (11, 4), (12, 4), (13, 2), (14, 2), (15, 4), (16, 4), (17, 2), (18, 2), (19, 2), (20, 1), (21, 2), (22, 4), (23, 1), (24, 4), (25, 3), (26, 3), (27, 2), (28, 3), (29, 2), (30, 1), (31, 2), (32, 3), (33, 3), (34, 2), (35, 4), (36, 3), (37, 1), (38, 2), (39, 1), (40, 2), (41, 1), (42, 3), (43, 3), (44, 1), (45, 3), (46, 1), (47, 4), (48, 2), (49, 2), (50, 4), (51, 2), (52, 4), (53, 1), (54, 4), (55, 3), (56, 3), (57, 3), (58, 1), (59, 2), (60, 4), (61, 1), (62, 3), (63, 1), (64, 3), (65, 1), (66, 3), (67, 4), (68, 1), (69, 1), (70, 1), (71, 3), (72, 2), (73, 1), (74, 2), (75, 3), (76, 3), (77, 3), (78, 4), (79, 1), (80, 4), (81, 4), (82, 4), (83, 2), (84, 3), (85, 2), (86, 1), (87, 1), (88, 2), (89, 2), (90, 2), (91, 4), (92, 4), (93, 3), (94, 2), (95, 3), (96, 3), (97, 2), (98, 4), (99, 4), (100, 3), (101, 4), (102, 2), (103, 4), (104, 2), (105, 3), (106, 2), (107, 3), (108, 4), (109, 4), (110, 2)]
63
+ questionnairev2 = [(1, 4), (2, 4), (3, 2), (4, 3), (5, 2), (6, 4), (7, 3), (8, 2), (9, 3), (10, 2), (11, 1), (12, 2), (13, 3), (14, 2), (15, 4), (16, 2), (17, 2), (18, 4), (19, 4), (20, 3), (21, 4), (22, 3), (23, 3), (24, 3), (25, 1), (26, 1), (27, 2), (28, 2), (29, 2), (30, 2), (31, 2), (32, 4), (33, 3), (34, 3), (35, 3), (36, 3), (37, 4), (38, 3), (39, 3), (40, 4), (41, 1), (42, 2), (43, 3), (44, 2), (45, 1), (46, 1), (47, 2), (48, 4), (49, 2), (50, 1), (51, 3), (52, 1), (53, 4), (54, 4), (55, 2), (56, 3), (57, 2), (58, 2), (59, 1), (60, 3), (61, 3), (62, 1), (63, 2), (64, 2), (65, 3), (66, 4), (67, 3), (68, 3), (69, 1), (70, 1), (71, 3), (72, 1), (73, 2), (74, 4), (75, 4), (76, 1), (77, 4), (78, 4), (79, 3), (80, 1), (81, 2), (82, 2), (83, 3), (84, 2), (85, 1), (86, 2), (87, 4), (88, 2), (89, 2), (90, 4), (91, 3), (92, 2), (93, 1), (94, 2), (95, 3), (96, 1), (97, 1), (98, 4), (99, 1), (100, 1)]
64
+ random_accuracy = estimate_random_accuracy(questionnaire)
65
+ random_accuracyv2 = estimate_random_accuracy(questionnairev2)
66
+
67
+
68
  # Determine file path based on dataset choice.
69
  # For now, if dataset_choice is "secQA", we use "Benchmark.csv"
70
  if dataset_choice == "secQA":
 
120
  df_filtered['Rank'] = df_filtered['Accuracy'].rank(method='dense', ascending=False).astype(int)
121
  df_filtered = df_filtered[['Rank', 'Model', 'Type', 'Accuracy']]
122
 
123
+
124
+
125
+ tab1, tab2 = st.tabs(["Leaderboard", "About"])
126
+
127
+ with tab1:
128
+ st.markdown("#### [View the SECQA Dataset](https://huggingface.co/datasets/zefang-liu/secqa)")
129
+
130
+ # Use columns to display leaderboard and model details side-by-side
131
+ col1, col2 = st.columns([2, 1])
132
+
133
+ with col1:
134
+ st.subheader(f"Leaderboard for {dataset_choice.upper()} Version {dataset_version}")
135
+ st.dataframe(df_filtered.style.hide(axis='index'))
136
+
137
+ with col2:
138
+ st.subheader("Model Details")
139
+ selected_model = st.selectbox("Select a Model", df_filtered["Model"].tolist())
140
+ model_details = df_filtered[df_filtered["Model"] == selected_model].iloc[0]
141
+ st.write(f"**Model:** {model_details['Model']}")
142
+ st.write(f"**Type:** {model_details['Type']}")
143
+ st.write(f"**Accuracy:** {model_details['Accuracy']:.2%}")
144
+ st.write(f"**Rank:** {model_details['Rank']}")
145
+
146
+ st.divider()
147
+ # Display the random baseline accuracy above the leaderboard
148
+ st.markdown("### Random Baseline Accuracy")
149
+ st.markdown("**{:.2%}** (computed with random guessing on SECQAv1)".format(random_accuracy))
150
+ st.markdown("**{:.2%}** (computed with random guessing on SECQAv2)".format(random_accuracyv2))
151
+
152
+
153
+ # Footer
154
+ st.markdown("---")
155
+ st.info("More dataset benchmarks will be added to this hub in the future.")
156
+
157
+ with tab2:
158
+ st.title("About the Cyber Benchmark Hub")
159
+ st.markdown("""
160
+ Welcome to the **Cyber Benchmark Hub: Leaderboard**!
161
+
162
+ This application benchmarks language models on their performance across cybersecurity question-answering tasks using the [SECQA dataset](https://huggingface.co/datasets/zefang-liu/secqa). It provides an interactive interface to explore model accuracy, rank models, and understand how different model types perform on security-centric multiple-choice questions.
163
+
164
+
165
+ ### Leaderboard Features
166
+
167
+ - Compare **different models** (e.g., GPT, Claude, Mistral) based on SECQA v1 or v2.
168
+ - Filter by **model type/source** (open-source, closed)
169
+ - View **dense rankings** where models with equal accuracy share the same rank.
170
+ - See detailed information for each model, including:
171
+ - Accuracy score
172
+ - Rank
173
+
174
+
175
+ ### Random Baseline Accuracy
176
+
177
+ The app computes the **expected accuracy** if a model guessed randomly on all questions:
178
+
179
+ This helps contextualize the actual performance of models.
180
+
181
+
182
+
183
+ ### Built by
184
+
185
+ [Priam.ai](https://www.priam.ai/)
186
+
187
+ *This benchmark hub will continue to expand as more models and datasets are released in the cybersecurity NLP space.*
188
+ """) # Replace with actual random_accuracy values if available