File size: 10,409 Bytes
90c9a37 9b8af98 6913a64 90c9a37 3548bcc 90c9a37 3548bcc 90c9a37 67137a1 90c9a37 9b8af98 90c9a37 9b8af98 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 67137a1 3548bcc 67137a1 6913a64 67137a1 90c9a37 9b8af98 90c9a37 9b8af98 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 67137a1 90c9a37 6913a64 67137a1 6913a64 3548bcc 6913a64 67137a1 6913a64 67137a1 6913a64 67137a1 90c9a37 67137a1 3548bcc 90c9a37 6913a64 3548bcc 67137a1 3548bcc 6913a64 90c9a37 6913a64 3548bcc 6913a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import streamlit as st
import asyncio
import tokonomics
from utils import create_model_hierarchy
from utils_on import analyze_hf_model # New import for On Premise Estimator functionality
st.set_page_config(page_title="LLM Pricing Calculator", layout="wide")
# --------------------------
# Async Data Loading Function
# --------------------------
async def load_data():
"""Simulate loading data asynchronously."""
AVAILABLE_MODELS = await tokonomics.get_available_models()
hierarchy = create_model_hierarchy(AVAILABLE_MODELS)
FILTERED_MODELS = []
MODEL_PRICING = {}
PROVIDERS = list(hierarchy.keys())
for provider in PROVIDERS:
for model_family in hierarchy[provider]:
for model_version in hierarchy[provider][model_family].keys():
for region in hierarchy[provider][model_family][model_version]:
model_id = hierarchy[provider][model_family][model_version][region]
MODEL_PRICING[model_id] = await tokonomics.get_model_costs(model_id)
FILTERED_MODELS.append(model_id)
return FILTERED_MODELS, MODEL_PRICING, PROVIDERS
# --------------------------
# Provider Change Function
# --------------------------
def provider_change(provider, selected_type, all_types=["text", "vision", "video", "image"]):
"""Filter models based on the selected provider and type."""
all_models = st.session_state.get("models", [])
new_models = []
others = [a_type for a_type in all_types if selected_type != a_type]
for model_name in all_models:
if provider in model_name:
if selected_type in model_name:
new_models.append(model_name)
elif any(other in model_name for other in others):
continue
else:
new_models.append(model_name)
return new_models if new_models else all_models
# --------------------------
# Estimate Cost Function
# --------------------------
def estimate_cost(num_alerts, input_size, output_size, model_id):
pricing = st.session_state.get("pricing", {})
cost_token = pricing.get(model_id)
if not cost_token:
return "NA"
input_tokens = round(input_size * 1.3)
output_tokens = round(output_size * 1.3)
price_day = cost_token.get("input_cost_per_token", 0) * input_tokens + \
cost_token.get("output_cost_per_token", 0) * output_tokens
price_total = price_day * num_alerts
return f"""## Estimated Cost:
Day Price: {price_total:0.2f} USD
Month Price: {price_total * 31:0.2f} USD
Year Price: {price_total * 365:0.2f} USD
"""
# --------------------------
# Load Data into Session State (only once)
# --------------------------
if "data_loaded" not in st.session_state:
with st.spinner("Loading pricing data..."):
models, pricing, providers = asyncio.run(load_data())
st.session_state["models"] = models
st.session_state["pricing"] = pricing
st.session_state["providers"] = providers
st.session_state["data_loaded"] = True
# --------------------------
# Sidebar
# --------------------------
with st.sidebar:
st.image("https://cdn.prod.website-files.com/630f558f2a15ca1e88a2f774/631f1436ad7a0605fecc5e15_Logo.svg",
use_container_width=True)
st.markdown("Visit: [https://www.priam.ai](https://www.priam.ai)")
st.divider()
st.sidebar.title("LLM Pricing Calculator")
# --------------------------
# Pills Navigation (Using st.pills)
# --------------------------
# st.pills creates a pill-style selection widget.
page = st.pills("Head",
options=["Model Selection", "On Premise Estimator", "About"],selection_mode="single",default="Model Selection",label_visibility="hidden",
#index=0 # Change index if you want a different default
)
# --------------------------
# Helper: Format Analysis Report
# --------------------------
def format_analysis_report(analysis_result: dict) -> str:
"""Convert the raw analysis_result dict into a human-readable report."""
if "error" in analysis_result:
return f"**Error:** {analysis_result['error']}"
lines = []
lines.append(f"### Model Analysis Report for `{analysis_result.get('model_id', 'Unknown Model')}`\n")
lines.append(f"**Parameter Size:** {analysis_result.get('parameter_size', 'N/A')} Billion parameters\n")
lines.append(f"**Precision:** {analysis_result.get('precision', 'N/A')}\n")
vram = analysis_result.get("vram_requirements", {})
lines.append("#### VRAM Requirements:")
lines.append(f"- Model Size: {vram.get('model_size_gb', 0):.2f} GB")
lines.append(f"- KV Cache: {vram.get('kv_cache_gb', 0):.2f} GB")
lines.append(f"- Activations: {vram.get('activations_gb', 0):.2f} GB")
lines.append(f"- Overhead: {vram.get('overhead_gb', 0):.2f} GB")
lines.append(f"- **Total VRAM:** {vram.get('total_vram_gb', 0):.2f} GB\n")
compatible_gpus = analysis_result.get("compatible_gpus", [])
lines.append("#### Compatible GPUs:")
if compatible_gpus:
for gpu in compatible_gpus:
lines.append(f"- {gpu}")
else:
lines.append("- None found")
lines.append(f"\n**Largest Compatible GPU:** {analysis_result.get('largest_compatible_gpu', 'N/A')}\n")
#gpu_perf = analysis_result.get("gpu_performance", {})
#if gpu_perf:
# lines.append("#### GPU Performance:")
# for gpu, perf in gpu_perf.items():
# lines.append(f"**{gpu}:**")
# lines.append(f" - Tokens per Second: {perf.get('tokens_per_second', 0):.2f}")
# lines.append(f" - FLOPs per Token: {perf.get('flops_per_token', 0):.2f}")
# lines.append(f" - Effective TFLOPS: {perf.get('effective_tflops', 0):.2f}\n")
#else:
# lines.append("#### GPU Performance: N/A\n")
return "\n".join(lines)
# --------------------------
# Render Content Based on Selected Pill
# --------------------------
if page == "Model Selection":
st.divider()
st.header("LLM Pricing App")
# --- Row 1: Provider/Type and Model Selection ---
col_left, col_right = st.columns(2)
with col_left:
selected_provider = st.selectbox(
"Select a provider",
st.session_state["providers"],
index=st.session_state["providers"].index("azure") if "azure" in st.session_state["providers"] else 0
)
selected_type = st.radio("Select type", options=["text", "image"], index=0)
with col_right:
filtered_models = provider_change(selected_provider, selected_type)
if filtered_models:
default_model = "o1" if "o1" in filtered_models else filtered_models[0]
selected_model = st.selectbox("Select a model", options=filtered_models, index=filtered_models.index(default_model))
else:
selected_model = None
st.write("No models available")
# --- Row 2: Alert Stats ---
col1, col2, col3 = st.columns(3)
with col1:
num_alerts = st.number_input("Security Alerts Per Day", value=100, min_value=1, step=1,
help="Number of security alerts to analyze daily")
with col2:
input_size = st.number_input("Alert Content Size (characters)", value=1000, min_value=1, step=1,
help="Include logs, metadata, and context per alert")
with col3:
output_size = st.number_input("Analysis Output Size (characters)", value=500, min_value=1, step=1,
help="Expected length of security analysis and recommendations")
# --- Row 3: Buttons ---
btn_col1, btn_col2 = st.columns(2)
with btn_col1:
if st.button("Estimate"):
if selected_model:
st.session_state["result"] = estimate_cost(num_alerts, input_size, output_size, selected_model)
else:
st.session_state["result"] = "No model selected."
with btn_col2:
if st.button("Refresh Pricing Data"):
with st.spinner("Refreshing pricing data..."):
models, pricing, providers = asyncio.run(load_data())
st.session_state["models"] = models
st.session_state["pricing"] = pricing
st.session_state["providers"] = providers
st.success("Pricing data refreshed!")
st.divider()
st.markdown("### Results")
if "result" in st.session_state:
st.write(st.session_state["result"])
else:
st.write("Use the buttons above to estimate costs.")
if st.button("Clear"):
st.session_state.pop("result", None)
elif page == "On Premise Estimator":
st.divider()
st.header("On Premise Estimator")
st.markdown("Enter a Hugging Face model ID to perform an on premise analysis using the provided estimator.")
hf_model_id = st.text_input("Hugging Face Model ID", value="meta-llama/Llama-4-Scout-17B-16E")
if st.button("Analyze Model"):
with st.spinner("Analyzing model..."):
analysis_result = analyze_hf_model(hf_model_id)
st.session_state["analysis_result"] = analysis_result
if "analysis_result" in st.session_state:
report = format_analysis_report(st.session_state["analysis_result"])
st.markdown(report)
elif page == "About":
st.divider()
st.markdown(
"""
## About This App
This is based on the tokonomics package.
- The app downloads the latest pricing from the LiteLLM repository.
- Using simple maths to estimate the total tokens.
- Helps you estimate hardware requirements for running open-source large language models (LLMs) on-premise using only the model ID from Hugging Face.
- Latest Version 0.1
---
### π Version History
| Version | Release Date | Key Feature Updates |
|--------|--------------|---------------------|
| `v1.1` | 2025-04-06 | Added On Premise Estimator Feature |
| `v1.0` | 2025-03-26 | Initial release with basic total tokens estimation |
---
Website: [https://www.priam.ai](https://www.priam.ai)
"""
)
st.markdown(
"""
### Found a Bug?
If you encounter any issues or have feedback, please email to **[email protected]**
Your input helps us improve the app!
"""
)
|