Spaces:
Sleeping
Sleeping
Alejadro Sanchez-Giraldo
commited on
Commit
·
192cb9d
1
Parent(s):
30bd2eb
code help
Browse files- .gitignore +7 -0
- README.md +25 -1
- app.py +46 -50
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dschatbot/
|
2 |
+
.DS_Store
|
3 |
+
.env
|
4 |
+
|
5 |
+
__pycache__/
|
6 |
+
|
7 |
+
flagged
|
README.md
CHANGED
@@ -11,4 +11,28 @@ license: mit
|
|
11 |
short_description: This is a simple chatbot to generte code using DeepSeeK
|
12 |
---
|
13 |
|
14 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: This is a simple chatbot to generte code using DeepSeeK
|
12 |
---
|
13 |
|
14 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
15 |
+
|
16 |
+
|
17 |
+
This is a chatbot that interacts with the Fantasy Premier League (FPL) API to provide information about players, teams, and stats.
|
18 |
+
|
19 |
+
```bash
|
20 |
+
python3 -m venv dschatbot
|
21 |
+
source dschatbot/bin/activate
|
22 |
+
```
|
23 |
+
|
24 |
+
## Installation
|
25 |
+
|
26 |
+
1. Install the dependencies:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
2. Run the chatbot:
|
33 |
+
|
34 |
+
```bash
|
35 |
+
python app.py
|
36 |
+
```
|
37 |
+
|
38 |
+
## Usage
|
app.py
CHANGED
@@ -1,64 +1,60 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
7 |
+
"deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
"deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
10 |
|
11 |
+
# Disable tokenizers parallelism warning
|
12 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Use CPU if CUDA is not available
|
16 |
+
device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
|
17 |
+
model = model.to(device)
|
|
|
|
|
18 |
|
19 |
+
# Theme builder
|
20 |
+
# gr.themes.builder()
|
21 |
|
22 |
+
theme = gr.themes.Soft(
|
23 |
+
primary_hue="sky",
|
24 |
+
neutral_hue="slate",
|
25 |
+
)
|
26 |
|
27 |
+
# Function to handle user input and generate a response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
29 |
|
30 |
+
def chatbot_response(query):
|
31 |
+
response = "Lets see what I can do for you!"
|
32 |
+
# if response if a JSON boject iterate over the elements and conver is a list like "a": "b" "/n" "c": "d"
|
33 |
+
if isinstance(response, dict):
|
34 |
+
response = "\n".join(
|
35 |
+
[f"{key}: {value}" for key, value in response.items()])
|
36 |
|
37 |
+
# Generate response using the model
|
38 |
+
messages = [{'role': 'user', 'content': query}]
|
39 |
+
inputs = tokenizer.apply_chat_template(
|
40 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
41 |
+
|
42 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=True, top_k=50,
|
43 |
+
top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
44 |
+
model_response = tokenizer.decode(
|
45 |
+
outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
return response + "\n\n" + model_response
|
48 |
+
|
49 |
+
|
50 |
+
# Set up the Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=chatbot_response,
|
53 |
+
inputs=gr.Textbox(label="Ask our DSChatbot Expert"),
|
54 |
+
outputs=gr.Textbox(label="Hope it helps!"),
|
55 |
+
theme=theme,
|
56 |
+
title="DSChatbot"
|
57 |
+
)
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
+
iface.launch()
|