File size: 6,213 Bytes
2fdce3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import (
get_saveasfilename_path,
get_file_path,
is_file_writable
)
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
folder_symbol = '\U0001f4c2' # π
refresh_symbol = '\U0001f504' # π
save_style_symbol = '\U0001f4be' # πΎ
document_symbol = '\U0001F4C4' # π
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
def extract_lora(
model_tuned,
model_org,
save_to,
save_precision,
dim,
v2,
sdxl,
conv_dim,
clamp_quantile,
min_diff,
device,
):
# Check for caption_text_input
if model_tuned == '':
log.info('Invalid finetuned model file')
return
if model_org == '':
log.info('Invalid base model file')
return
# Check if source model exist
if not os.path.isfile(model_tuned):
log.info('The provided finetuned model is not a file')
return
if not os.path.isfile(model_org):
log.info('The provided base model is not a file')
return
if not is_file_writable(save_to):
return
run_cmd = (
f'{PYTHON} "{os.path.join("networks","extract_lora_from_models.py")}"'
)
run_cmd += f' --save_precision {save_precision}'
run_cmd += f' --save_to "{save_to}"'
run_cmd += f' --model_org "{model_org}"'
run_cmd += f' --model_tuned "{model_tuned}"'
run_cmd += f' --dim {dim}'
run_cmd += f' --device {device}'
if conv_dim > 0:
run_cmd += f' --conv_dim {conv_dim}'
if v2:
run_cmd += f' --v2'
if sdxl:
run_cmd += f' --sdxl'
run_cmd += f' --clamp_quantile {clamp_quantile}'
run_cmd += f' --min_diff {min_diff}'
log.info(run_cmd)
# Run the command
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
###
# Gradio UI
###
def gradio_extract_lora_tab(headless=False):
with gr.Tab('Extract LoRA'):
gr.Markdown(
'This utility can extract a LoRA network from a finetuned model.'
)
lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False)
model_ext_name = gr.Textbox(value='Model types', visible=False)
with gr.Row():
model_tuned = gr.Textbox(
label='Finetuned model',
placeholder='Path to the finetuned model to extract',
interactive=True,
)
button_model_tuned_file = gr.Button(
folder_symbol,
elem_id='open_folder_small',
visible=(not headless),
)
button_model_tuned_file.click(
get_file_path,
inputs=[model_tuned, model_ext, model_ext_name],
outputs=model_tuned,
show_progress=False,
)
model_org = gr.Textbox(
label='Stable Diffusion base model',
placeholder='Stable Diffusion original model: ckpt or safetensors file',
interactive=True,
)
button_model_org_file = gr.Button(
folder_symbol,
elem_id='open_folder_small',
visible=(not headless),
)
button_model_org_file.click(
get_file_path,
inputs=[model_org, model_ext, model_ext_name],
outputs=model_org,
show_progress=False,
)
with gr.Row():
save_to = gr.Textbox(
label='Save to',
placeholder='path where to save the extracted LoRA model...',
interactive=True,
)
button_save_to = gr.Button(
folder_symbol,
elem_id='open_folder_small',
visible=(not headless),
)
button_save_to.click(
get_saveasfilename_path,
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
show_progress=False,
)
save_precision = gr.Dropdown(
label='Save precision',
choices=['fp16', 'bf16', 'float'],
value='float',
interactive=True,
)
with gr.Row():
dim = gr.Slider(
minimum=4,
maximum=1024,
label='Network Dimension (Rank)',
value=128,
step=1,
interactive=True,
)
conv_dim = gr.Slider(
minimum=0,
maximum=1024,
label='Conv Dimension (Rank)',
value=128,
step=1,
interactive=True,
)
clamp_quantile = gr.Number(
label='Clamp Quantile',
value=1,
interactive=True,
)
min_diff = gr.Number(
label='Minimum difference',
value=0.01,
interactive=True,
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=False, interactive=True)
sdxl = gr.Checkbox(label='SDXL', value=False, interactive=True)
device = gr.Dropdown(
label='Device',
choices=[
'cpu',
'cuda',
],
value='cuda',
interactive=True,
)
extract_button = gr.Button('Extract LoRA model')
extract_button.click(
extract_lora,
inputs=[
model_tuned,
model_org,
save_to,
save_precision,
dim,
v2,
sdxl,
conv_dim,
clamp_quantile,
min_diff,
device,
],
show_progress=False,
)
|