import torch import torch.nn as nn class SiameseNetwork(nn.Module): def __init__(self): super(SiameseNetwork, self).__init__() self.cnn1 = nn.Sequential( nn.Conv2d(1, 96, kernel_size=11, stride=1), nn.ReLU(inplace=True), nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2), nn.MaxPool2d(3, stride=2), nn.Conv2d(96, 256, kernel_size=5, stride=1, padding=2), nn.ReLU(inplace=True), nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75, k=2), nn.MaxPool2d(3, stride=2), nn.Dropout2d(p=0.3), nn.Conv2d(256, 384, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(3, stride=2), nn.Dropout2d(p=0.3), ) self.fc1 = nn.Sequential( nn.Linear(25600, 1024), nn.ReLU(inplace=True), nn.Dropout2d(p=0.5), nn.Linear(1024, 128), nn.ReLU(inplace=True), nn.Linear(128, 2) ) def forward_once(self, x): output = self.cnn1(x) output = output.view(output.size()[0], -1) output = self.fc1(output) return output def forward(self, input1, input2): output1 = self.forward_once(input1) output2 = self.forward_once(input2) return output1, output2 # Function to load the trained model def load_model(model_path): model = SiameseNetwork() model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model.eval() return model