File size: 2,751 Bytes
74a2a96 b7e10c3 74a2a96 a5bdaaa b7e10c3 74a2a96 b3cdf68 b7e10c3 fad088c 7810d79 74a2a96 b7e10c3 74a2a96 b7e10c3 74a2a96 b7e10c3 6dba575 b7e10c3 6dba575 74a2a96 b7e10c3 6dba575 74a2a96 b7e10c3 74a2a96 b7e10c3 74a2a96 b7e10c3 74a2a96 b7e10c3 74a2a96 b7e10c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from diffusers.utils import load_image
import spaces
import torch
from panna import Depth2Image, DepthAnythingV2
model_depth = DepthAnythingV2("depth-anything/Depth-Anything-V2-Large-hf", torch_dtype=torch.float32)
model_image = Depth2Image("stabilityai/stable-diffusion-2-depth")
title = ("# [Depth2Image](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [DepthAnythingV2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf)\n"
"Depth2Image with depth map predicted by DepthAnything V2. The demo is part of [panna](https://github.com/abacws-abacus/panna) project.")
example_files = []
for n in range(1, 10):
load_image(f"https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/resolve/main/assets/examples/demo{n:0>2}.jpg").save(f"demo{n:0>2}.jpg")
example_files.append(f"demo{n:0>2}.jpg")
@spaces.GPU
def infer(init_image, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps):
depth = model_depth.image2depth([init_image])
return model_image.text2image(
[init_image],
depth_maps=depth,
prompt=[prompt],
negative_prompt=[negative_prompt],
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
seed=seed
)[0]
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=True, max_lines=1, placeholder="Enter your prompt", container=False)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Input Image", type='pil')
result = gr.Image(label="Result")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1344, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1344, step=64, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50)
examples = gr.Examples(examples=example_files, inputs=[init_image])
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn=infer,
inputs=[init_image, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.launch()
|