File size: 9,438 Bytes
1028a4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39abc8d
56e3c29
bd1ee8d
 
 
 
 
3a45cce
bd1ee8d
 
 
 
51b55ad
97e3cb7
bd1ee8d
51b55ad
3a45cce
 
51b55ad
2405a2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1ee8d
2405a2e
 
 
 
 
 
 
 
 
 
 
 
 
1028a4f
97e3cb7
3a45cce
1b584d1
51b55ad
bde75ba
 
 
 
 
 
 
 
 
 
 
97e3cb7
1b584d1
bde75ba
 
 
 
 
 
10c4ed3
bde75ba
272e331
bde75ba
 
 
 
 
 
10c4ed3
 
 
 
bd1ee8d
3a45cce
bd1ee8d
 
 
 
 
 
3a45cce
2405a2e
bd1ee8d
2405a2e
 
 
 
 
 
 
 
bd1ee8d
 
3a45cce
bd1ee8d
 
 
 
 
5242e79
bd1ee8d
 
 
 
 
2405a2e
5242e79
 
 
 
 
 
 
 
bd1ee8d
 
5242e79
 
 
 
bd1ee8d
5242e79
bd1ee8d
5242e79
 
bd1ee8d
 
 
 
 
 
2405a2e
bd1ee8d
5242e79
2405a2e
 
 
5242e79
 
 
bd1ee8d
5242e79
39abc8d
2405a2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image

# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", "Type here...")

# if st.button("Check News"):
#     st.write("🔍 Processing...")
#     st.success("✅ Result: This news is FAKE.")  # Replace with ML Model

# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

# def compress_image(image, quality=90, max_size=(300, 300)):  # ✅ High clarity image
#     img = Image.open(image).convert("RGB")
#     img.thumbnail(max_size)  
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#     img.save(temp_file.name, "JPEG", quality=quality)
#     return temp_file.name

# if uploaded_image is not None:
#     compressed_image_path = compress_image(uploaded_image)
#     st.image(compressed_image_path, caption="🖼️ Compressed & Clear Image", use_column_width=True)
#     if st.button("Analyze Image"):
#         st.write("🔍 Processing...")
#         st.error("⚠️ Result: This image is a Deepfake.")  # Replace with model

# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

# def compress_video(video):
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")

#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
#         temp_video.write(video.read())
#         video_path = temp_video.name

#     cap = cv2.VideoCapture(video_path)
    
#     if not cap.isOpened():
#         st.error("❌ Error: Unable to read video!")
#         return None

#     fourcc = cv2.VideoWriter_fourcc(*'mp4v')

#     # ✅ New Resolution (100x80) & 15 FPS
#     frame_width = 50  
#     frame_height = 80  
#     out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))  

#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break
#         frame = cv2.resize(frame, (frame_width, frame_height))
#         out.write(frame)

#     cap.release()
#     out.release()
    
#     return temp_file.name

# if uploaded_video is not None:
#     st.video(uploaded_video)  # ✅ فوراً ویڈیو اپ لوڈ ہونے کے بعد دکھائیں
#     compressed_video_path = compress_video(uploaded_video)
#     if compressed_video_path:
#         st.video(compressed_video_path)  # ✅ کمپریسڈ ویڈیو بھی دکھائیں
#         if st.button("Analyze Video"):
#             st.write("🔍 Processing...")
#             st.warning("⚠️ Result: This video contains Deepfake elements.")  # Replace with model

# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")

import streamlit as st
import numpy as np
import cv2
import tempfile
import os
from PIL import Image
import tensorflow as tf
from transformers import pipeline
from tensorflow.keras.applications import Xception, EfficientNetB7
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.preprocessing.image import load_img, img_to_array

# ---- Page Configuration ----
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

st.title("📰 Fake News & Deepfake Detection Tool")
st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# Load Models
fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")

# Load Deepfake Detection Models
base_model_image = Xception(weights="imagenet", include_top=False)
base_model_image.trainable = False  # Freeze base layers
x = GlobalAveragePooling2D()(base_model_image.output)
x = Dense(1024, activation="relu")(x)
x = Dense(1, activation="sigmoid")(x)  # Sigmoid for probability output
deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)

base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
base_model_video.trainable = False
x = GlobalAveragePooling2D()(base_model_video.output)
x = Dense(1024, activation="relu")(x)
x = Dense(1, activation="sigmoid")(x)
deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)

# Function to Preprocess Image
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(100, 100))  # Xception expects 299x299
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img /= 255.0  # Normalize pixel values
    return img

# Function to Detect Deepfake Image
def detect_deepfake_image(image_path):
    image = preprocess_image(image_path)
    prediction = deepfake_image_model.predict(image)[0][0]
    confidence = round(float(prediction), 2)
    label = "FAKE" if confidence > 0.5 else "REAL"
    return {"label": label, "score": confidence}

# ---- Fake News Detection Section ----
st.subheader("📝 Fake News Detection")
news_input = st.text_area("Enter News Text:", placeholder="Type here...")

# Manually verified facts database (you can expand this)
fact_check_db = {
    "elon musk was born in 1932": "FAKE",
    "earth revolves around the sun": "REAL",
    "the moon is made of cheese": "FAKE",
}

def check_manual_facts(text):
    text_lower = text.lower().strip()
    return fact_check_db.get(text_lower, None)

if st.button("Check News"):
    st.write("🔍 Processing...")

    # Check if the news is in the fact-check database
    manual_result = check_manual_facts(news_input)
    if manual_result:
        if manual_result == "FAKE":
            st.error(f"⚠️ Result: This news is **FAKE** (Verified by Database).")
        else:
            st.success(f"✅ Result: This news is **REAL** (Verified by Database).")
    else:
        # Use AI model if fact is not in the database
        prediction = fake_news_detector(news_input)
        label = prediction[0]['label'].lower()
        confidence = prediction[0]['score']

        if "fake" in label or confidence < 0.5:
            st.error(f"⚠️ Result: This news is **FAKE**. (Confidence: {confidence:.2f})")
        else:
            st.success(f"✅ Result: This news is **REAL**. (Confidence: {confidence:.2f})")

# ---- Deepfake Image Detection Section ----
st.subheader("📸 Deepfake Image Detection")
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

if uploaded_image is not None:
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
    img = Image.open(uploaded_image).convert("RGB")
    img.save(temp_file.name, "JPEG")
    st.image(temp_file.name, caption="🖼️ Uploaded Image", use_column_width=True)
    
    if st.button("Analyze Image"):
        st.write("🔍 Processing...")
        result = detect_deepfake_image(temp_file.name)
        
        if result["label"] == "REAL":
          st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
        else: 
            
            st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")

# ---- Deepfake Video Detection Section ----
st.subheader("🎥 Deepfake Video Detection")
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

def detect_deepfake_video(video_path):
    cap = cv2.VideoCapture(video_path)
    frame_scores = []
    frame_count = 0
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        if frame_count % 10 == 0:  # ہر 10ویں فریم کا تجزیہ کریں
            frame_path = "temp_frame.jpg"
            cv2.imwrite(frame_path, frame)
            result = detect_deepfake_image(frame_path)
            frame_scores.append(result["score"])
            os.remove(frame_path)
        
        frame_count += 1
    
    cap.release()
    
    if not frame_scores:
        return {"label": "UNKNOWN", "score": 0.0}  # اگر کوئی فریم پراسیس نہ ہو سکے
    
    avg_score = np.mean(frame_scores)
    confidence = round(float(avg_score), 2)
    final_label = "FAKE" if avg_score > 0.5 else "REAL"
    
    return {"label": final_label, "score": confidence}

if uploaded_video is not None:
    st.video(uploaded_video)
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
    with open(temp_file.name, "wb") as f:
        f.write(uploaded_video.read())
    
    if st.button("Analyze Video"):
        st.write("🔍 Processing... Please wait.")
        result = detect_deepfake_video(temp_file.name)
        
        if result["label"] == "FAKE":
            st.error(f"⚠️ Deepfake Detected! This video appears to be FAKE. (Confidence: {result['score']:.2f})")
        elif result["label"] == "REAL":
            st.success(f"✅ This video appears to be REAL. (Confidence: {1 - result['score']:.2f})")
        else:
            st.warning("⚠️ Unable to analyze the video. Please try a different file.")

st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")