Spaces:
Running
on
T4
Running
on
T4
File size: 4,742 Bytes
b9dea2c ee94965 dbb32ab ee94965 dbb32ab 714f9cb 1fa53a1 714f9cb b9dea2c dbb32ab 714f9cb dbb32ab b9dea2c 714f9cb 2c60ec4 714f9cb 2c60ec4 dbb32ab 1fa53a1 714f9cb b44d45c 714f9cb b44d45c 714f9cb dbb32ab 82673a2 b44d45c 714f9cb dbb32ab b44d45c dbb32ab b44d45c 9aaed47 dbb32ab 714f9cb b44d45c 714f9cb dbb32ab b9dea2c dbb32ab 714f9cb b44d45c 714f9cb b44d45c 714f9cb dbb32ab b44d45c 714f9cb dbb32ab b44d45c dbb32ab 2047d3f dbb32ab 714f9cb b44d45c 714f9cb 2047d3f dbb32ab 714f9cb b9dea2c b44d45c ee94965 b3bb9ad b44d45c 1fa53a1 b44d45c 1fa53a1 b44d45c b3bb9ad b44d45c b3bb9ad b44d45c b3bb9ad b44d45c b3bb9ad b44d45c b3bb9ad b44d45c b3bb9ad b44d45c b9dea2c b44d45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import json
import subprocess
from PIL import Image
import os
import tempfile
import logging
# Load language mappings from JSON file
with open("languages.json", "r", encoding='utf-8') as file:
language_map = json.load(file)
# Configuração básica de logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def save_temp_image(img):
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "input_image.png")
img.save(img_path)
logging.info(f"Imagem salva em {img_path}")
return img_path, temp_dir
def run_command(command):
logging.info(f"Executing command: {command}") # Adiciona o log do comando
try:
result = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT, encoding='utf-8')
logging.info("Command Output: " + result)
return result
except subprocess.CalledProcessError as e:
logging.error(f"Command failed with error: {e.output}")
return None
def ocr_function_cli(img, lang_name):
img_path, temp_dir = save_temp_image(img)
# Get language abbreviation from language_map
lang_code = language_map.get(lang_name, "en") # Default to English if not found
command = f"surya_ocr {img_path} --langs {lang_code} --images --results_dir {temp_dir}"
if run_command(command) is None:
return img, "OCR failed"
result_img_path = os.path.join(temp_dir, "image_with_text.png")
result_text_path = os.path.join(temp_dir, "results.json")
if os.path.exists(result_img_path):
result_img = Image.open(result_img_path)
else:
result_img = img
if os.path.exists(result_text_path):
with open(result_text_path, "r", encoding='utf-8') as file:
result_text = json.load(file)
text_output = "\n".join([str(page) for page in result_text.values()])
else:
text_output = "No text detected"
# Limpeza movida para depois da leitura dos resultados
os.remove(img_path)
logging.info(f"Limpeza concluída para {img_path}")
return result_img, text_output
def text_line_detection_function_cli(img):
img_path, temp_dir = save_temp_image(img)
command = f"surya_detect {img_path} --images --results_dir {temp_dir}"
if run_command(command) is None:
return img, {"error": "Detection failed"}
result_img_path = os.path.join(temp_dir, "image_with_lines.png")
result_json_path = os.path.join(temp_dir, "results.json")
if os.path.exists(result_img_path):
result_img = Image.open(result_img_path)
else:
result_img = img
if os.path.exists(result_json_path):
with open(result_json_path, "r", encoding='utf-8') as file:
result_json = json.load(file)
print(result_json) # Add this line
else:
result_json = {"error": "No detection results found"}
# Limpeza movida para depois da leitura dos resultados
os.remove(img_path)
logging.info(f"Limpeza concluída para {img_path}")
print(result_img_path) # Add this line
print(result_json_path) # Add this line
return result_img, result_json
with gr.Blocks() as app:
gr.Markdown("# Surya OCR and Text Line Detection via CLI")
with gr.Tab("OCR"):
with gr.Column():
ocr_input_image = gr.Image(label="Input Image for OCR", type="pil")
# Use language names for display in the dropdown
ocr_language_selector = gr.Dropdown(
label="Select Language for OCR",
choices=list(language_map.keys()), # Use language names
value="English"
)
ocr_run_button = gr.Button("Run OCR")
with gr.Column():
ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False)
ocr_text_output = gr.TextArea(label="Recognized Text")
ocr_run_button.click(
fn=ocr_function_cli, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]
)
with gr.Tab("Text Line Detection"):
with gr.Column():
detection_input_image = gr.Image(label="Input Image for Detection", type="pil")
detection_run_button = gr.Button("Run Text Line Detection")
with gr.Column():
detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False)
detection_json_output = gr.JSON(label="Detection JSON Output")
detection_run_button.click(
fn=text_line_detection_function_cli, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]
)
if __name__ == "__main__":
app.launch() |