File size: 4,742 Bytes
b9dea2c
ee94965
dbb32ab
ee94965
dbb32ab
 
714f9cb
 
1fa53a1
 
 
 
714f9cb
 
b9dea2c
dbb32ab
 
 
 
714f9cb
dbb32ab
b9dea2c
714f9cb
2c60ec4
714f9cb
 
 
 
 
 
 
 
2c60ec4
dbb32ab
 
1fa53a1
 
 
 
 
714f9cb
b44d45c
714f9cb
b44d45c
 
714f9cb
dbb32ab
 
82673a2
b44d45c
714f9cb
dbb32ab
b44d45c
dbb32ab
b44d45c
9aaed47
dbb32ab
714f9cb
 
b44d45c
714f9cb
dbb32ab
b9dea2c
dbb32ab
 
 
714f9cb
b44d45c
714f9cb
b44d45c
 
714f9cb
dbb32ab
 
 
b44d45c
714f9cb
dbb32ab
b44d45c
dbb32ab
2047d3f
dbb32ab
 
714f9cb
 
b44d45c
714f9cb
2047d3f
 
dbb32ab
714f9cb
b9dea2c
b44d45c
 
ee94965
b3bb9ad
b44d45c
1fa53a1
 
b44d45c
 
1fa53a1
b44d45c
 
 
 
b3bb9ad
b44d45c
 
b3bb9ad
b44d45c
 
 
b3bb9ad
b44d45c
b3bb9ad
b44d45c
 
 
b3bb9ad
b44d45c
 
b3bb9ad
b44d45c
 
 
b9dea2c
 
b44d45c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import json
import subprocess
from PIL import Image
import os
import tempfile
import logging

# Load language mappings from JSON file
with open("languages.json", "r", encoding='utf-8') as file:
    language_map = json.load(file)

# Configuração básica de logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def save_temp_image(img):
    temp_dir = tempfile.mkdtemp()
    img_path = os.path.join(temp_dir, "input_image.png")
    img.save(img_path)
    logging.info(f"Imagem salva em {img_path}")
    return img_path, temp_dir

def run_command(command):
    logging.info(f"Executing command: {command}")  # Adiciona o log do comando
    try:
        result = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT, encoding='utf-8')
        logging.info("Command Output: " + result)
        return result
    except subprocess.CalledProcessError as e:
        logging.error(f"Command failed with error: {e.output}")
        return None


def ocr_function_cli(img, lang_name):
    img_path, temp_dir = save_temp_image(img)

    # Get language abbreviation from language_map
    lang_code = language_map.get(lang_name, "en")  # Default to English if not found

    command = f"surya_ocr {img_path} --langs {lang_code} --images --results_dir {temp_dir}"
    if run_command(command) is None:
        return img, "OCR failed"

    result_img_path = os.path.join(temp_dir, "image_with_text.png")
    result_text_path = os.path.join(temp_dir, "results.json")

    if os.path.exists(result_img_path):
        result_img = Image.open(result_img_path)
    else:
        result_img = img

    if os.path.exists(result_text_path):
        with open(result_text_path, "r", encoding='utf-8') as file:
            result_text = json.load(file)
        text_output = "\n".join([str(page) for page in result_text.values()])
    else:
        text_output = "No text detected"

    # Limpeza movida para depois da leitura dos resultados
    os.remove(img_path)
    logging.info(f"Limpeza concluída para {img_path}")
    return result_img, text_output

def text_line_detection_function_cli(img):
    img_path, temp_dir = save_temp_image(img)
    command = f"surya_detect {img_path} --images --results_dir {temp_dir}"
    if run_command(command) is None:
        return img, {"error": "Detection failed"}

    result_img_path = os.path.join(temp_dir, "image_with_lines.png")
    result_json_path = os.path.join(temp_dir, "results.json")

    if os.path.exists(result_img_path):
        result_img = Image.open(result_img_path)
    else:
        result_img = img

    if os.path.exists(result_json_path):
        with open(result_json_path, "r", encoding='utf-8') as file:
            result_json = json.load(file)
            print(result_json)  # Add this line
    else:
        result_json = {"error": "No detection results found"}

    # Limpeza movida para depois da leitura dos resultados
    os.remove(img_path)
    logging.info(f"Limpeza concluída para {img_path}")
    print(result_img_path)  # Add this line
    print(result_json_path)  # Add this line
    return result_img, result_json
    
with gr.Blocks() as app:
    gr.Markdown("# Surya OCR and Text Line Detection via CLI")

    with gr.Tab("OCR"):
        with gr.Column():
            ocr_input_image = gr.Image(label="Input Image for OCR", type="pil")

            # Use language names for display in the dropdown
            ocr_language_selector = gr.Dropdown(
                label="Select Language for OCR",
                choices=list(language_map.keys()),  # Use language names
                value="English"
            )
            ocr_run_button = gr.Button("Run OCR")

        with gr.Column():
            ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False)
            ocr_text_output = gr.TextArea(label="Recognized Text")

        ocr_run_button.click(
            fn=ocr_function_cli, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]
        )

    with gr.Tab("Text Line Detection"):
        with gr.Column():
            detection_input_image = gr.Image(label="Input Image for Detection", type="pil")
            detection_run_button = gr.Button("Run Text Line Detection")

        with gr.Column():
            detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False)
            detection_json_output = gr.JSON(label="Detection JSON Output")

        detection_run_button.click(
            fn=text_line_detection_function_cli, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]
        )

if __name__ == "__main__":
    app.launch()