File size: 25,349 Bytes
011960a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union, Any, Tuple
import io
import base64
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet


class Visualizer:
    """
    Generate visualizations and reports for whale transaction data
    """
    
    def __init__(self):
        self.color_map = {
            "buy": "green",
            "sell": "red",
            "transfer": "blue",
            "other": "gray"
        }
    
    def create_transaction_timeline(self, transactions_df: pd.DataFrame) -> go.Figure:
        """
        Create a timeline visualization of transactions
        
        Args:
            transactions_df: DataFrame of transactions
            
        Returns:
            Plotly figure object
        """
        if transactions_df.empty:
            fig = go.Figure()
            fig.update_layout(
                title="No Transaction Data Available",
                xaxis_title="Date",
                yaxis_title="Action",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text="No transaction data available for timeline",
                showarrow=False,
                font=dict(size=14)
            )
            return fig
        
        try:
            # Ensure timestamp column exists
            if 'Timestamp' in transactions_df.columns:
                timestamp_col = 'Timestamp'
            elif 'timeStamp' in transactions_df.columns:
                timestamp_col = 'timeStamp'
                # Convert timestamp to datetime if it's not already
                if not pd.api.types.is_datetime64_any_dtype(transactions_df[timestamp_col]):
                    try:
                        transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col].astype(float), unit='s')
                    except Exception as e:
                        print(f"Error converting timestamp: {str(e)}")
                        transactions_df[timestamp_col] = pd.date_range(start='2025-01-01', periods=len(transactions_df), freq='H')
            else:
                # Create a dummy timestamp if none exists
                transactions_df['dummy_timestamp'] = pd.date_range(start='2025-01-01', periods=len(transactions_df), freq='H')
                timestamp_col = 'dummy_timestamp'
            
            # Create figure
            fig = go.Figure()
            
            # Add transactions to timeline
            for idx, row in transactions_df.iterrows():
                # Determine transaction type
                if 'From' in transactions_df.columns and 'To' in transactions_df.columns:
                    from_col, to_col = 'From', 'To'
                else:
                    from_col, to_col = 'from', 'to'
                
                tx_type = "other"
                hover_text = ""
                
                if pd.isna(row[from_col]) or row[from_col] == '0x0000000000000000000000000000000000000000':
                    tx_type = "buy"
                    hover_text = f"Buy: {row[to_col]}"
                elif pd.isna(row[to_col]) or row[to_col] == '0x0000000000000000000000000000000000000000':
                    tx_type = "sell"
                    hover_text = f"Sell: {row[from_col]}"
                else:
                    tx_type = "transfer"
                    hover_text = f"Transfer: {row[from_col]}{row[to_col]}"
                
                # Add amount to hover text if available
                if 'Amount' in row:
                    hover_text += f"<br>Amount: {row['Amount']}"
                elif 'value' in row:
                    hover_text += f"<br>Value: {row['value']}"
                
                # Add token info if available
                if 'tokenSymbol' in row:
                    hover_text += f"<br>Token: {row['tokenSymbol']}"
                
                # Add transaction to timeline
                fig.add_trace(go.Scatter(
                    x=[row[timestamp_col]],
                    y=[tx_type],
                    mode='markers',
                    marker=dict(
                        size=12,
                        color=self.color_map.get(tx_type, "gray"),
                        line=dict(width=1, color='black')
                    ),
                    name=tx_type,
                    text=hover_text,
                    hoverinfo='text'
                ))
            
            # Update layout
            fig.update_layout(
                title='Whale Transaction Timeline',
                xaxis_title='Time',
                yaxis_title='Transaction Type',
                height=400,
                template='plotly_white',
                showlegend=True,
                hovermode='closest'
            )
            
            return fig
            
        except Exception as e:
            # If any error occurs, return a figure with error information
            print(f"Error creating transaction timeline: {str(e)}")
            fig = go.Figure()
            fig.update_layout(
                title="Error in Transaction Timeline",
                xaxis_title="",
                yaxis_title="",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text=f"Error generating timeline: {str(e)}",
                showarrow=False,
                font=dict(size=14, color="red")
            )
            return fig
    
    def create_volume_chart(self, transactions_df: pd.DataFrame, time_window: str = 'D') -> go.Figure:
        """
        Create a volume chart aggregated by time window
        
        Args:
            transactions_df: DataFrame of transactions
            time_window: Time window for aggregation (e.g., 'D' for day, 'H' for hour)
            
        Returns:
            Plotly figure object
        """
        # Create an empty figure with appropriate message if no data
        if transactions_df.empty:
            fig = go.Figure()
            fig.update_layout(
                title="No Transaction Data Available",
                xaxis_title="Date",
                yaxis_title="Volume",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text="No transactions found for volume analysis",
                showarrow=False,
                font=dict(size=14)
            )
            return fig
            
        try:
            # Create a deep copy to avoid modifying the original
            df = transactions_df.copy()
            
            # Ensure timestamp column exists and convert to datetime
            if 'Timestamp' in df.columns:
                timestamp_col = 'Timestamp'
            elif 'timeStamp' in df.columns:
                timestamp_col = 'timeStamp'
            else:
                # Create a dummy timestamp if none exists
                df['dummy_timestamp'] = pd.date_range(start='2025-01-01', periods=len(df), freq='H')
                timestamp_col = 'dummy_timestamp'
            
            # Convert timestamp to datetime safely
            if not pd.api.types.is_datetime64_any_dtype(df[timestamp_col]):
                try:
                    df[timestamp_col] = pd.to_datetime(df[timestamp_col].astype(float), unit='s')
                except Exception as e:
                    print(f"Error converting timestamp: {str(e)}")
                    df[timestamp_col] = pd.date_range(start='2025-01-01', periods=len(df), freq='H')
            
            # Ensure amount column exists
            if 'Amount' in df.columns:
                amount_col = 'Amount'
            elif 'tokenAmount' in df.columns:
                amount_col = 'tokenAmount'
            elif 'value' in df.columns:
                # Try to adjust for decimals if 'tokenDecimal' exists
                if 'tokenDecimal' in df.columns:
                    df['adjustedValue'] = df['value'].astype(float) / (10 ** df['tokenDecimal'].astype(int))
                    amount_col = 'adjustedValue'
                else:
                    amount_col = 'value'
            else:
                # Create a dummy amount column if none exists
                df['dummy_amount'] = 1.0
                amount_col = 'dummy_amount'
            
            # Alternative approach: manually aggregate by date to avoid index issues
            df['date'] = df[timestamp_col].dt.date
            
            # Group by date
            volume_data = df.groupby('date').agg({
                amount_col: 'sum',
                timestamp_col: 'count'
            }).reset_index()
            
            volume_data.columns = ['Date', 'Volume', 'Count']
            
            # Create figure
            fig = go.Figure()
            
            # Add volume bars
            fig.add_trace(go.Bar(
                x=volume_data['Date'],
                y=volume_data['Volume'],
                name='Volume',
                marker_color='blue',
                opacity=0.7
            ))
            
            # Add transaction count line
            fig.add_trace(go.Scatter(
                x=volume_data['Date'],
                y=volume_data['Count'],
                name='Transaction Count',
                mode='lines+markers',
                marker=dict(color='red'),
                yaxis='y2'
            ))
            
            # Update layout
            fig.update_layout(
                title="Transaction Volume Over Time",
                xaxis_title="Date",
                yaxis_title="Volume",
                yaxis2=dict(
                    title="Transaction Count",
                    overlaying="y",
                    side="right"
                ),
                height=500,
                template="plotly_white",
                hovermode="x unified",
                legend=dict(
                    orientation="h",
                    yanchor="bottom",
                    y=1.02,
                    xanchor="right",
                    x=1
                )
            )
            
            return fig
            
        except Exception as e:
            # If any error occurs, return a figure with error information
            print(f"Error in create_volume_chart: {str(e)}")
            fig = go.Figure()
            fig.update_layout(
                title="Error in Volume Chart",
                xaxis_title="",
                yaxis_title="",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text=f"Error generating volume chart: {str(e)}",
                showarrow=False,
                font=dict(size=14, color="red")
            )
            return fig
    
    def plot_volume_by_day(self, transactions_df: pd.DataFrame) -> go.Figure:
        """
        Create a volume chart aggregated by day with improved visualization
        
        Args:
            transactions_df: DataFrame of transactions
            
        Returns:
            Plotly figure object
        """
        # This is a wrapper around create_volume_chart that specifically uses day as the time window
        return self.create_volume_chart(transactions_df, time_window='D')
    
    def plot_transaction_flow(self, transactions_df: pd.DataFrame) -> go.Figure:
        """
        Create a network flow visualization of transactions between wallets
        
        Args:
            transactions_df: DataFrame of transactions
            
        Returns:
            Plotly figure object
        """
        if transactions_df.empty:
            # Return empty figure if no data
            fig = go.Figure()
            fig.update_layout(
                title="No Transaction Flow Data Available",
                xaxis_title="",
                yaxis_title="",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text="No transactions found for flow analysis",
                showarrow=False,
                font=dict(size=14)
            )
            return fig
        
        try:
            # Ensure from/to columns exist
            if 'From' in transactions_df.columns and 'To' in transactions_df.columns:
                from_col, to_col = 'From', 'To'
            elif 'from' in transactions_df.columns and 'to' in transactions_df.columns:
                from_col, to_col = 'from', 'to'
            else:
                # Create an error visualization
                fig = go.Figure()
                fig.update_layout(
                    title="Transaction Flow Error",
                    xaxis_title="",
                    yaxis_title="",
                    height=400,
                    template="plotly_white"
                )
                fig.add_annotation(
                    text="From/To columns not found in transactions data",
                    showarrow=False,
                    font=dict(size=14, color="red")
                )
                return fig
            
            # Ensure amount column exists
            if 'Amount' in transactions_df.columns:
                amount_col = 'Amount'
            elif 'tokenAmount' in transactions_df.columns:
                amount_col = 'tokenAmount'
            elif 'value' in transactions_df.columns:
                # Try to adjust for decimals if 'tokenDecimal' exists
                if 'tokenDecimal' in transactions_df.columns:
                    transactions_df['adjustedValue'] = transactions_df['value'].astype(float) / (10 ** transactions_df['tokenDecimal'].astype(int))
                    amount_col = 'adjustedValue'
                else:
                    amount_col = 'value'
            else:
                # Create an error visualization
                fig = go.Figure()
                fig.update_layout(
                    title="Transaction Flow Error",
                    xaxis_title="",
                    yaxis_title="",
                    height=400,
                    template="plotly_white"
                )
                fig.add_annotation(
                    text="Amount column not found in transactions data",
                    showarrow=False,
                    font=dict(size=14, color="red")
                )
                return fig
                
            # Aggregate flows between wallets
            flow_df = transactions_df.groupby([from_col, to_col]).agg({
                amount_col: ['sum', 'count']
            }).reset_index()
            
            flow_df.columns = [from_col, to_col, 'Value', 'Count']
            
            # Limit to top 20 flows to keep visualization readable
            top_flows = flow_df.sort_values('Value', ascending=False).head(20)
            
            # Create Sankey diagram
            # First, create a mapping of unique addresses to indices
            all_addresses = pd.unique(top_flows[[from_col, to_col]].values.ravel('K'))
            address_to_idx = {addr: i for i, addr in enumerate(all_addresses)}
            
            # Create source, target, and value arrays for the Sankey diagram
            sources = [address_to_idx[addr] for addr in top_flows[from_col]]
            targets = [address_to_idx[addr] for addr in top_flows[to_col]]
            values = top_flows['Value'].tolist()
            
            # Create hover text
            hover_text = [f"From: {src}<br>To: {tgt}<br>Value: {val:.2f}<br>Count: {cnt}" 
                         for src, tgt, val, cnt in zip(top_flows[from_col], top_flows[to_col], 
                                                      top_flows['Value'], top_flows['Count'])]
            
            # Shorten addresses for node labels
            node_labels = [f"{addr[:6]}...{addr[-4:]}" if len(addr) > 12 else addr 
                          for addr in all_addresses]
            
            # Create Sankey diagram figure
            fig = go.Figure(data=[go.Sankey(
                node=dict(
                    pad=15,
                    thickness=20,
                    line=dict(color="black", width=0.5),
                    label=node_labels,
                    color="blue"
                ),
                link=dict(
                    source=sources,
                    target=targets,
                    value=values,
                    label=hover_text,
                    hovertemplate='%{label}<extra></extra>'
                )
            )])
            
            fig.update_layout(
                title="Whale Transaction Flow",
                font_size=12,
                height=600,
                template="plotly_white"
            )
            
            return fig
            
        except Exception as e:
            # If any error occurs, return a figure with error information
            print(f"Error in plot_transaction_flow: {str(e)}")
            fig = go.Figure()
            fig.update_layout(
                title="Error in Transaction Flow",
                xaxis_title="",
                yaxis_title="",
                height=400,
                template="plotly_white"
            )
            fig.add_annotation(
                text=f"Error generating transaction flow: {str(e)}",
                showarrow=False,
                font=dict(size=14, color="red")
            )
            return fig
    
    def generate_pdf_report(self, 
                         transactions_df: pd.DataFrame, 
                         patterns: List[Dict[str, Any]] = None,
                         price_impact: Dict[str, Any] = None,
                         alerts: List[Dict[str, Any]] = None,
                         title: str = "Whale Analysis Report",
                         start_date: datetime = None,
                         end_date: datetime = None) -> bytes:
        """
        Generate a PDF report of whale activity
        
        Args:
            transactions_df: DataFrame of transactions
            patterns: List of pattern dictionaries
            price_impact: Dictionary of price impact analysis
            alerts: List of alert dictionaries
            title: Report title
            start_date: Start date for report period
            end_date: End date for report period
            
        Returns:
            PDF report as bytes
        """
        buffer = io.BytesIO()
        doc = SimpleDocTemplate(buffer, pagesize=letter)
        elements = []
        
        # Add title
        styles = getSampleStyleSheet()
        elements.append(Paragraph(title, styles['Title']))
        
        # Add date range
        if start_date and end_date:
            date_range = f"Period: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}"
            elements.append(Paragraph(date_range, styles['Heading2']))
        
        elements.append(Spacer(1, 12))
        
        # Add transaction summary
        if not transactions_df.empty:
            elements.append(Paragraph("Transaction Summary", styles['Heading2']))
            summary_data = [
                ["Total Transactions", str(len(transactions_df))],
                ["Unique Addresses", str(len(pd.unique(transactions_df['from'].tolist() + transactions_df['to'].tolist())))]
            ]
            
            # Add token breakdown if available
            if 'tokenSymbol' in transactions_df.columns:
                token_counts = transactions_df['tokenSymbol'].value_counts()
                summary_data.append(["Most Common Token", f"{token_counts.index[0]} ({token_counts.iloc[0]} txns)"])
            
            summary_table = Table(summary_data)
            summary_table.setStyle(TableStyle([
                ('BACKGROUND', (0, 0), (0, -1), colors.lightgrey),
                ('GRID', (0, 0), (-1, -1), 1, colors.black),
                ('PADDING', (0, 0), (-1, -1), 6),
            ]))
            elements.append(summary_table)
            elements.append(Spacer(1, 12))
        
        # Add pattern analysis
        if patterns:
            elements.append(Paragraph("Trading Patterns Detected", styles['Heading2']))
            for i, pattern in enumerate(patterns):
                pattern_text = f"Pattern {i+1}: {pattern.get('name', 'Unnamed')}\n"
                pattern_text += f"Description: {pattern.get('description', 'No description')}\n"
                if 'risk_profile' in pattern:
                    pattern_text += f"Risk Profile: {pattern['risk_profile']}\n"
                if 'confidence' in pattern:
                    pattern_text += f"Confidence: {pattern['confidence']:.2f}\n"
                
                elements.append(Paragraph(pattern_text, styles['Normal']))
                elements.append(Spacer(1, 6))
            
            elements.append(Spacer(1, 12))
        
        # Add price impact analysis
        if price_impact:
            elements.append(Paragraph("Price Impact Analysis", styles['Heading2']))
            impact_text = ""
            if 'avg_impact' in price_impact:
                impact_text += f"Average Impact: {price_impact['avg_impact']:.2f}%\n"
            if 'max_impact' in price_impact:
                impact_text += f"Maximum Impact: {price_impact['max_impact']:.2f}%\n"
            if 'insights' in price_impact:
                impact_text += f"Insights: {price_impact['insights']}\n"
                
            elements.append(Paragraph(impact_text, styles['Normal']))
            elements.append(Spacer(1, 12))
        
        # Add alerts
        if alerts:
            elements.append(Paragraph("Alerts", styles['Heading2']))
            for alert in alerts:
                alert_text = f"{alert.get('level', 'Info')}: {alert.get('message', 'No details')}"
                elements.append(Paragraph(alert_text, styles['Normal']))
                elements.append(Spacer(1, 6))
        
        # Build the PDF
        doc.build(elements)
        buffer.seek(0)
        return buffer.getvalue()
    
    def generate_csv_report(self, 
                         transactions_df: pd.DataFrame, 
                         report_type: str = "Transaction Summary") -> str:
        """
        Generate a CSV report of transaction data
        
        Args:
            transactions_df: DataFrame of transactions
            report_type: Type of report to generate
            
        Returns:
            CSV data as string
        """
        if transactions_df.empty:
            return "No data available for report"
        
        if report_type == "Transaction Summary":
            # Return basic transaction summary
            return transactions_df.to_csv(index=False)
        elif report_type == "Daily Volume":
            # Get timestamp column
            if 'Timestamp' in transactions_df.columns:
                timestamp_col = 'Timestamp'
            elif 'timeStamp' in transactions_df.columns:
                timestamp_col = 'timeStamp'
                # Convert timestamp to datetime if needed
                if not pd.api.types.is_datetime64_any_dtype(transactions_df[timestamp_col]):
                    try:
                        transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col].astype(float), unit='s')
                    except:
                        return "Error processing timestamp data"
            else:
                return "Timestamp column not found"
            
            # Get amount column
            if 'Amount' in transactions_df.columns:
                amount_col = 'Amount'
            elif 'tokenAmount' in transactions_df.columns:
                amount_col = 'tokenAmount'
            elif 'value' in transactions_df.columns:
                amount_col = 'value'
            else:
                return "Amount column not found"
            
            # Aggregate by day
            transactions_df['date'] = transactions_df[timestamp_col].dt.date
            daily_volume = transactions_df.groupby('date').agg({
                amount_col: 'sum',
                'hash': 'count'  # Assuming 'hash' exists for all transactions
            }).reset_index()
            
            daily_volume.columns = ['Date', 'Volume', 'Transactions']
            return daily_volume.to_csv(index=False)
        else:
            return "Unknown report type"
    
    def generate_png_chart(self, 
                       fig: go.Figure, 
                       width: int = 1200, 
                       height: int = 800) -> bytes:
        """
        Convert a Plotly figure to PNG image data
        
        Args:
            fig: Plotly figure object
            width: Image width in pixels
            height: Image height in pixels
            
        Returns:
            PNG image as bytes
        """
        img_bytes = fig.to_image(format="png", width=width, height=height)
        return img_bytes