Spaces:
Build error
Build error
File size: 13,318 Bytes
011960a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import json
import pandas as pd
from datetime import datetime
from typing import Dict, List, Optional, Union, Any, Tuple
from langchain.tools import tool
from modules.api_client import ArbiscanClient, GeminiClient
from modules.data_processor import DataProcessor
# Tools for Arbiscan API
class ArbiscanTools:
def __init__(self, arbiscan_client: ArbiscanClient):
self.client = arbiscan_client
@tool("get_token_transfers")
def get_token_transfers(self, address: str, contract_address: Optional[str] = None) -> str:
"""
Get ERC-20 token transfers for a specific address
Args:
address: Wallet address
contract_address: Optional token contract address to filter by
Returns:
List of token transfers as JSON string
"""
transfers = self.client.get_token_transfers(
address=address,
contract_address=contract_address
)
return json.dumps(transfers)
@tool("get_token_balance")
def get_token_balance(self, address: str, contract_address: str) -> str:
"""
Get the current balance of a specific token for an address
Args:
address: Wallet address
contract_address: Token contract address
Returns:
Token balance
"""
balance = self.client.get_token_balance(
address=address,
contract_address=contract_address
)
return balance
@tool("get_normal_transactions")
def get_normal_transactions(self, address: str) -> str:
"""
Get normal transactions (ETH/ARB transfers) for a specific address
Args:
address: Wallet address
Returns:
List of normal transactions as JSON string
"""
transactions = self.client.get_normal_transactions(address=address)
return json.dumps(transactions)
@tool("get_internal_transactions")
def get_internal_transactions(self, address: str) -> str:
"""
Get internal transactions for a specific address
Args:
address: Wallet address
Returns:
List of internal transactions as JSON string
"""
transactions = self.client.get_internal_transactions(address=address)
return json.dumps(transactions)
@tool("fetch_whale_transactions")
def fetch_whale_transactions(self,
addresses: List[str],
token_address: Optional[str] = None,
min_token_amount: Optional[float] = None,
min_usd_value: Optional[float] = None) -> str:
"""
Fetch whale transactions for a list of addresses
Args:
addresses: List of wallet addresses
token_address: Optional token contract address to filter by
min_token_amount: Minimum token amount
min_usd_value: Minimum USD value
Returns:
DataFrame of whale transactions as JSON string
"""
transactions_df = self.client.fetch_whale_transactions(
addresses=addresses,
token_address=token_address,
min_token_amount=min_token_amount,
min_usd_value=min_usd_value
)
return transactions_df.to_json(orient="records")
# Tools for Gemini API
class GeminiTools:
def __init__(self, gemini_client: GeminiClient):
self.client = gemini_client
@tool("get_current_price")
def get_current_price(self, symbol: str) -> str:
"""
Get the current price of a token
Args:
symbol: Token symbol (e.g., "ETHUSD")
Returns:
Current price
"""
price = self.client.get_current_price(symbol=symbol)
return str(price) if price is not None else "Price not found"
@tool("get_historical_prices")
def get_historical_prices(self,
symbol: str,
start_time: str,
end_time: str) -> str:
"""
Get historical prices for a token within a time range
Args:
symbol: Token symbol (e.g., "ETHUSD")
start_time: Start datetime in ISO format
end_time: End datetime in ISO format
Returns:
DataFrame of historical prices as JSON string
"""
# Parse datetime strings
start_time_dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
end_time_dt = datetime.fromisoformat(end_time.replace('Z', '+00:00'))
prices_df = self.client.get_historical_prices(
symbol=symbol,
start_time=start_time_dt,
end_time=end_time_dt
)
if prices_df is not None:
return prices_df.to_json(orient="records")
else:
return "[]"
@tool("get_price_impact")
def get_price_impact(self,
symbol: str,
transaction_time: str,
lookback_minutes: int = 5,
lookahead_minutes: int = 5) -> str:
"""
Analyze the price impact before and after a transaction
Args:
symbol: Token symbol (e.g., "ETHUSD")
transaction_time: Transaction datetime in ISO format
lookback_minutes: Minutes to look back before the transaction
lookahead_minutes: Minutes to look ahead after the transaction
Returns:
Price impact data as JSON string
"""
# Parse datetime string
transaction_time_dt = datetime.fromisoformat(transaction_time.replace('Z', '+00:00'))
impact_data = self.client.get_price_impact(
symbol=symbol,
transaction_time=transaction_time_dt,
lookback_minutes=lookback_minutes,
lookahead_minutes=lookahead_minutes
)
# Convert to JSON string
result = {
"pre_price": impact_data["pre_price"],
"post_price": impact_data["post_price"],
"impact_pct": impact_data["impact_pct"]
}
return json.dumps(result)
# Tools for Data Processor
class DataProcessorTools:
def __init__(self, data_processor: DataProcessor):
self.processor = data_processor
@tool("aggregate_transactions")
def aggregate_transactions(self,
transactions_json: str,
time_window: str = 'D') -> str:
"""
Aggregate transactions by time window
Args:
transactions_json: JSON string of transactions
time_window: Time window for aggregation (e.g., 'D' for day, 'H' for hour)
Returns:
Aggregated DataFrame as JSON string
"""
# Convert JSON to DataFrame
transactions_df = pd.read_json(transactions_json)
# Process data
agg_df = self.processor.aggregate_transactions(
transactions_df=transactions_df,
time_window=time_window
)
# Convert result to JSON
return agg_df.to_json(orient="records")
@tool("identify_patterns")
def identify_patterns(self,
transactions_json: str,
n_clusters: int = 3) -> str:
"""
Identify trading patterns using clustering
Args:
transactions_json: JSON string of transactions
n_clusters: Number of clusters for K-Means
Returns:
List of pattern dictionaries as JSON string
"""
# Convert JSON to DataFrame
transactions_df = pd.read_json(transactions_json)
# Process data
patterns = self.processor.identify_patterns(
transactions_df=transactions_df,
n_clusters=n_clusters
)
# Convert result to JSON
result = []
for pattern in patterns:
# Convert non-serializable objects to serializable format
pattern_json = {
"name": pattern["name"],
"description": pattern["description"],
"cluster_id": pattern["cluster_id"],
"occurrence_count": pattern["occurrence_count"],
"confidence": pattern["confidence"],
# Skip chart_data as it's not JSON serializable
"examples": pattern["examples"].to_json(orient="records") if isinstance(pattern["examples"], pd.DataFrame) else []
}
result.append(pattern_json)
return json.dumps(result)
@tool("detect_anomalous_transactions")
def detect_anomalous_transactions(self,
transactions_json: str,
sensitivity: str = "Medium") -> str:
"""
Detect anomalous transactions using statistical methods
Args:
transactions_json: JSON string of transactions
sensitivity: Detection sensitivity ("Low", "Medium", "High")
Returns:
DataFrame of anomalous transactions as JSON string
"""
# Convert JSON to DataFrame
transactions_df = pd.read_json(transactions_json)
# Process data
anomalies_df = self.processor.detect_anomalous_transactions(
transactions_df=transactions_df,
sensitivity=sensitivity
)
# Convert result to JSON
return anomalies_df.to_json(orient="records")
@tool("analyze_price_impact")
def analyze_price_impact(self,
transactions_json: str,
price_data_json: str) -> str:
"""
Analyze the price impact of transactions
Args:
transactions_json: JSON string of transactions
price_data_json: JSON string of price impact data
Returns:
Price impact analysis as JSON string
"""
# Convert JSON to DataFrame
transactions_df = pd.read_json(transactions_json)
# Convert price_data_json to dictionary
price_data = json.loads(price_data_json)
# Process data
impact_analysis = self.processor.analyze_price_impact(
transactions_df=transactions_df,
price_data=price_data
)
# Convert result to JSON (excluding non-serializable objects)
result = {
"avg_impact_pct": impact_analysis.get("avg_impact_pct"),
"max_impact_pct": impact_analysis.get("max_impact_pct"),
"min_impact_pct": impact_analysis.get("min_impact_pct"),
"significant_moves_count": impact_analysis.get("significant_moves_count"),
"total_transactions": impact_analysis.get("total_transactions"),
# Skip impact_chart as it's not JSON serializable
"transactions_with_impact": impact_analysis.get("transactions_with_impact").to_json(orient="records") if "transactions_with_impact" in impact_analysis else []
}
return json.dumps(result)
@tool("detect_wash_trading")
def detect_wash_trading(self,
transactions_json: str,
addresses_json: str,
sensitivity: str = "Medium") -> str:
"""
Detect potential wash trading between addresses
Args:
transactions_json: JSON string of transactions
addresses_json: JSON string of addresses to analyze
sensitivity: Detection sensitivity ("Low", "Medium", "High")
Returns:
List of potential wash trading incidents as JSON string
"""
# Convert JSON to DataFrame
transactions_df = pd.read_json(transactions_json)
# Convert addresses_json to list
addresses = json.loads(addresses_json)
# Process data
wash_trades = self.processor.detect_wash_trading(
transactions_df=transactions_df,
addresses=addresses,
sensitivity=sensitivity
)
# Convert result to JSON (excluding non-serializable objects)
result = []
for trade in wash_trades:
trade_json = {
"type": trade["type"],
"addresses": trade["addresses"],
"risk_level": trade["risk_level"],
"description": trade["description"],
"detection_time": trade["detection_time"],
"title": trade["title"],
"evidence": trade["evidence"].to_json(orient="records") if isinstance(trade["evidence"], pd.DataFrame) else []
# Skip chart as it's not JSON serializable
}
result.append(trade_json)
return json.dumps(result)
|