File size: 29,810 Bytes
011960a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union, Any, Tuple
import plotly.graph_objects as go
import plotly.express as px


class ManipulationDetector:
    """
    Detect potential market manipulation patterns in whale transactions
    """
    
    def __init__(self):
        # Define known manipulation patterns
        self.patterns = {
            "pump_and_dump": {
                "description": "Rapid buys followed by coordinated sell-offs, causing price to first rise then crash",
                "risk_factor": 0.8
            },
            "wash_trading": {
                "description": "Self-trading across multiple addresses to create false impression of market activity",
                "risk_factor": 0.9
            },
            "spoofing": {
                "description": "Large orders placed then canceled before execution to manipulate price",
                "risk_factor": 0.7
            },
            "layering": {
                "description": "Multiple orders at different price levels to create false impression of market depth",
                "risk_factor": 0.6
            },
            "momentum_ignition": {
                "description": "Creating sharp price moves to trigger other participants' momentum-based trading",
                "risk_factor": 0.5
            }
        }
    
    def detect_wash_trading(self, 
                           transactions_df: pd.DataFrame,
                           addresses: List[str],
                           sensitivity: str = "Medium",
                           lookback_hours: int = 24) -> List[Dict[str, Any]]:
        """
        Detect potential wash trading between addresses
        
        Args:
            transactions_df: DataFrame of transactions
            addresses: List of addresses to analyze
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            lookback_hours: Hours to look back for wash trading patterns
            
        Returns:
            List of potential wash trading alerts
        """
        if transactions_df.empty or not addresses:
            return []
        
        # Ensure from/to columns exist
        if 'From' in transactions_df.columns and 'To' in transactions_df.columns:
            from_col, to_col = 'From', 'To'
        elif 'from' in transactions_df.columns and 'to' in transactions_df.columns:
            from_col, to_col = 'from', 'to'
        else:
            raise ValueError("From/To columns not found in transactions DataFrame")
            
        # Ensure timestamp column exists
        if 'Timestamp' in transactions_df.columns:
            timestamp_col = 'Timestamp'
        elif 'timeStamp' in transactions_df.columns:
            timestamp_col = 'timeStamp'
        else:
            raise ValueError("Timestamp column not found in transactions DataFrame")
        
        # Ensure timestamp is datetime
        if not pd.api.types.is_datetime64_any_dtype(transactions_df[timestamp_col]):
            if isinstance(transactions_df[timestamp_col].iloc[0], (int, float)):
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col], unit='s')
            else:
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col])
        
        # Define sensitivity thresholds
        if sensitivity == "Low":
            min_cycles = 3  # Minimum number of back-and-forth transactions
            max_time_diff = 120  # Maximum minutes between transactions
        elif sensitivity == "Medium":
            min_cycles = 2
            max_time_diff = 60
        else:  # High
            min_cycles = 1
            max_time_diff = 30
        
        # Filter transactions by lookback period
        lookback_time = datetime.now() - timedelta(hours=lookback_hours)
        recent_txs = transactions_df[transactions_df[timestamp_col] >= lookback_time]
        
        if recent_txs.empty:
            return []
        
        # Filter transactions involving the addresses
        address_txs = recent_txs[
            (recent_txs[from_col].isin(addresses)) | 
            (recent_txs[to_col].isin(addresses))
        ].copy()
        
        if address_txs.empty:
            return []
        
        # Sort by timestamp
        address_txs = address_txs.sort_values(by=timestamp_col)
        
        # Detect cycles of transactions between same addresses
        wash_trades = []
        
        for addr1 in addresses:
            for addr2 in addresses:
                if addr1 == addr2:
                    continue
                    
                # Find transactions from addr1 to addr2
                a1_to_a2 = address_txs[
                    (address_txs[from_col] == addr1) & 
                    (address_txs[to_col] == addr2)
                ]
                
                # Find transactions from addr2 to addr1
                a2_to_a1 = address_txs[
                    (address_txs[from_col] == addr2) & 
                    (address_txs[to_col] == addr1)
                ]
                
                if a1_to_a2.empty or a2_to_a1.empty:
                    continue
                
                # Check for back-and-forth patterns
                cycles = 0
                evidence = []
                
                for _, tx1 in a1_to_a2.iterrows():
                    tx1_time = tx1[timestamp_col]
                    
                    # Find return transactions within the time window
                    return_txs = a2_to_a1[
                        (a2_to_a1[timestamp_col] > tx1_time) & 
                        (a2_to_a1[timestamp_col] <= tx1_time + pd.Timedelta(minutes=max_time_diff))
                    ]
                    
                    if not return_txs.empty:
                        cycles += 1
                        evidence.append(tx1)
                        evidence.append(return_txs.iloc[0])
                
                if cycles >= min_cycles:
                    # Create visualization
                    if evidence:
                        evidence_df = pd.DataFrame(evidence)
                        
                        # Get amount column
                        if 'Amount' in evidence_df.columns:
                            amount_col = 'Amount'
                        elif 'tokenAmount' in evidence_df.columns:
                            amount_col = 'tokenAmount'
                        elif 'value' in evidence_df.columns:
                            # Try to adjust for decimals if 'tokenDecimal' exists
                            if 'tokenDecimal' in evidence_df.columns:
                                evidence_df['adjustedValue'] = evidence_df['value'].astype(float) / (10 ** evidence_df['tokenDecimal'].astype(int))
                                amount_col = 'adjustedValue'
                            else:
                                amount_col = 'value'
                        else:
                            amount_col = None
                        
                        # Create figure if amount column exists
                        if amount_col:
                            fig = px.scatter(
                                evidence_df, 
                                x=timestamp_col, 
                                y=amount_col,
                                color=from_col,
                                title=f"Potential Wash Trading Between {addr1[:8]}... and {addr2[:8]}..."
                            )
                        else:
                            fig = None
                    else:
                        fig = None
                    
                    wash_trades.append({
                        "type": "Wash Trading",
                        "addresses": [addr1, addr2],
                        "risk_level": "High" if cycles >= min_cycles * 2 else "Medium",
                        "description": f"Detected {cycles} cycles of back-and-forth transactions between addresses",
                        "detection_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                        "title": f"Wash Trading Pattern ({cycles} cycles)",
                        "evidence": pd.DataFrame(evidence) if evidence else None,
                        "chart": fig
                    })
        
        return wash_trades
    
    def detect_pump_and_dump(self, 
                            transactions_df: pd.DataFrame,
                            price_data: Dict[str, Dict[str, Any]],
                            sensitivity: str = "Medium") -> List[Dict[str, Any]]:
        """
        Detect potential pump and dump schemes
        
        Args:
            transactions_df: DataFrame of transactions
            price_data: Dictionary of price impact data for each transaction
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            
        Returns:
            List of potential pump and dump alerts
        """
        if transactions_df.empty or not price_data:
            return []
        
        # Ensure timestamp column exists
        if 'Timestamp' in transactions_df.columns:
            timestamp_col = 'Timestamp'
        elif 'timeStamp' in transactions_df.columns:
            timestamp_col = 'timeStamp'
        else:
            raise ValueError("Timestamp column not found in transactions DataFrame")
        
        # Ensure from/to columns exist
        if 'From' in transactions_df.columns and 'To' in transactions_df.columns:
            from_col, to_col = 'From', 'To'
        elif 'from' in transactions_df.columns and 'to' in transactions_df.columns:
            from_col, to_col = 'from', 'to'
        else:
            raise ValueError("From/To columns not found in transactions DataFrame")
        
        # Ensure timestamp is datetime
        if not pd.api.types.is_datetime64_any_dtype(transactions_df[timestamp_col]):
            if isinstance(transactions_df[timestamp_col].iloc[0], (int, float)):
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col], unit='s')
            else:
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col])
        
        # Define sensitivity thresholds
        if sensitivity == "Low":
            accumulation_threshold = 5  # Number of buys to consider accumulation
            pump_threshold = 10.0  # % price increase to trigger pump
            dump_threshold = -8.0  # % price decrease to trigger dump
        elif sensitivity == "Medium":
            accumulation_threshold = 3
            pump_threshold = 7.0
            dump_threshold = -5.0
        else:  # High
            accumulation_threshold = 2
            pump_threshold = 5.0
            dump_threshold = -3.0
        
        # Combine price impact data with transactions
        txs_with_impact = []
        
        for idx, row in transactions_df.iterrows():
            tx_hash = row.get('Transaction Hash', row.get('hash', None))
            if not tx_hash or tx_hash not in price_data:
                continue
            
            tx_impact = price_data[tx_hash]
            
            if tx_impact['impact_pct'] is None:
                continue
                
            txs_with_impact.append({
                'transaction_hash': tx_hash,
                'timestamp': row[timestamp_col],
                'from': row[from_col],
                'to': row[to_col],
                'pre_price': tx_impact['pre_price'],
                'post_price': tx_impact['post_price'],
                'impact_pct': tx_impact['impact_pct']
            })
        
        if not txs_with_impact:
            return []
            
        impact_df = pd.DataFrame(txs_with_impact)
        impact_df = impact_df.sort_values(by='timestamp')
        
        # Look for accumulation phases followed by price pumps and then dumps
        pump_and_dumps = []
        
        # Group by address to analyze per wallet
        address_groups = {}
        
        for from_addr in impact_df['from'].unique():
            address_groups[from_addr] = impact_df[impact_df['from'] == from_addr]
        
        for to_addr in impact_df['to'].unique():
            if to_addr in address_groups:
                address_groups[to_addr] = pd.concat([
                    address_groups[to_addr],
                    impact_df[impact_df['to'] == to_addr]
                ])
            else:
                address_groups[to_addr] = impact_df[impact_df['to'] == to_addr]
        
        for address, addr_df in address_groups.items():
            # Skip if not enough transactions
            if len(addr_df) < accumulation_threshold + 2:
                continue
                
            # Look for continuous price increase followed by sharp drop
            window_size = min(len(addr_df), 10)
            for i in range(len(addr_df) - window_size + 1):
                window = addr_df.iloc[i:i+window_size]
                
                # Get cumulative price change in window
                if len(window) >= 2:
                    first_price = window.iloc[0]['pre_price']
                    last_price = window.iloc[-1]['post_price']
                    
                    if first_price is None or last_price is None:
                        continue
                        
                    cumulative_change = ((last_price - first_price) / first_price) * 100
                    
                    # Check for pump phase
                    max_price = window['post_price'].max()
                    max_idx = window['post_price'].idxmax()
                    
                    if max_idx < len(window) - 1:
                        max_to_end = ((window.iloc[-1]['post_price'] - max_price) / max_price) * 100
                        
                        # If we have a pump followed by a dump
                        if (cumulative_change > pump_threshold or 
                            any(window['impact_pct'] > pump_threshold)) and max_to_end < dump_threshold:
                            
                            # Create chart
                            fig = go.Figure()
                            
                            # Plot price line
                            times = [t.timestamp() for t in window['timestamp']]
                            prices = []
                            for _, row in window.iterrows():
                                prices.append(row['pre_price'])
                                prices.append(row['post_price'])
                            
                            times_expanded = []
                            for t in times:
                                times_expanded.append(t - 60)  # 1 min before
                                times_expanded.append(t + 60)  # 1 min after
                            
                            fig.add_trace(go.Scatter(
                                x=times_expanded,
                                y=prices,
                                mode='lines+markers',
                                name='Price',
                                line=dict(color='blue')
                            ))
                            
                            # Highlight pump and dump phases
                            max_time_idx = window.index.get_loc(max_idx)
                            pump_x = times_expanded[:max_time_idx*2+2]
                            pump_y = prices[:max_time_idx*2+2]
                            
                            dump_x = times_expanded[max_time_idx*2:]
                            dump_y = prices[max_time_idx*2:]
                            
                            fig.add_trace(go.Scatter(
                                x=pump_x,
                                y=pump_y,
                                mode='lines',
                                line=dict(color='green', width=3),
                                name='Pump Phase'
                            ))
                            
                            fig.add_trace(go.Scatter(
                                x=dump_x,
                                y=dump_y,
                                mode='lines',
                                line=dict(color='red', width=3),
                                name='Dump Phase'
                            ))
                            
                            fig.update_layout(
                                title='Potential Pump and Dump Pattern',
                                xaxis_title='Time',
                                yaxis_title='Price',
                                hovermode='closest'
                            )
                            
                            pump_and_dumps.append({
                                "type": "Pump and Dump",
                                "addresses": [address],
                                "risk_level": "High" if max_to_end < dump_threshold * 1.5 else "Medium",
                                "description": f"Price pumped {cumulative_change:.2f}% before dropping {max_to_end:.2f}%",
                                "detection_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                                "title": f"Pump ({cumulative_change:.1f}%) and Dump ({max_to_end:.1f}%)",
                                "evidence": window,
                                "chart": fig
                            })
        
        return pump_and_dumps
    
    def detect_spoofing(self, 
                       transactions_df: pd.DataFrame,
                       order_book_data: Optional[pd.DataFrame] = None,
                       sensitivity: str = "Medium") -> List[Dict[str, Any]]:
        """
        Detect potential spoofing (placing and quickly canceling large orders)
        
        Args:
            transactions_df: DataFrame of transactions
            order_book_data: Optional DataFrame of order book data
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            
        Returns:
            List of potential spoofing alerts
        """
        # Note: This is a placeholder since we don't have direct order book data
        # In a real implementation, this would analyze order placement and cancellations
        
        # For now, return an empty list as we can't detect spoofing without order book data
        return []
    
    def detect_layering(self, 
                       transactions_df: pd.DataFrame,
                       order_book_data: Optional[pd.DataFrame] = None,
                       sensitivity: str = "Medium") -> List[Dict[str, Any]]:
        """
        Detect potential layering (placing multiple orders at different price levels)
        
        Args:
            transactions_df: DataFrame of transactions
            order_book_data: Optional DataFrame of order book data
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            
        Returns:
            List of potential layering alerts
        """
        # Note: This is a placeholder since we don't have direct order book data
        # In a real implementation, this would analyze order book depth and patterns
        
        # For now, return an empty list as we can't detect layering without order book data
        return []
    
    def detect_momentum_ignition(self, 
                               transactions_df: pd.DataFrame,
                               price_data: Dict[str, Dict[str, Any]],
                               sensitivity: str = "Medium") -> List[Dict[str, Any]]:
        """
        Detect potential momentum ignition (creating sharp price moves)
        
        Args:
            transactions_df: DataFrame of transactions
            price_data: Dictionary of price impact data for each transaction
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            
        Returns:
            List of potential momentum ignition alerts
        """
        if transactions_df.empty or not price_data:
            return []
        
        # Ensure timestamp column exists
        if 'Timestamp' in transactions_df.columns:
            timestamp_col = 'Timestamp'
        elif 'timeStamp' in transactions_df.columns:
            timestamp_col = 'timeStamp'
        else:
            raise ValueError("Timestamp column not found in transactions DataFrame")
        
        # Ensure timestamp is datetime
        if not pd.api.types.is_datetime64_any_dtype(transactions_df[timestamp_col]):
            if isinstance(transactions_df[timestamp_col].iloc[0], (int, float)):
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col], unit='s')
            else:
                transactions_df[timestamp_col] = pd.to_datetime(transactions_df[timestamp_col])
        
        # Define sensitivity thresholds
        if sensitivity == "Low":
            impact_threshold = 15.0  # % price impact to trigger alert
            time_window_minutes = 5  # Time window to look for follow-up transactions
        elif sensitivity == "Medium":
            impact_threshold = 10.0
            time_window_minutes = 10
        else:  # High
            impact_threshold = 5.0
            time_window_minutes = 15
        
        # Combine price impact data with transactions
        txs_with_impact = []
        
        for idx, row in transactions_df.iterrows():
            tx_hash = row.get('Transaction Hash', row.get('hash', None))
            if not tx_hash or tx_hash not in price_data:
                continue
            
            tx_impact = price_data[tx_hash]
            
            if tx_impact['impact_pct'] is None:
                continue
                
            txs_with_impact.append({
                'transaction_hash': tx_hash,
                'timestamp': row[timestamp_col],
                'from': row.get('From', row.get('from', 'Unknown')),
                'to': row.get('To', row.get('to', 'Unknown')),
                'pre_price': tx_impact['pre_price'],
                'post_price': tx_impact['post_price'],
                'impact_pct': tx_impact['impact_pct']
            })
        
        if not txs_with_impact:
            return []
            
        impact_df = pd.DataFrame(txs_with_impact)
        impact_df = impact_df.sort_values(by='timestamp')
        
        # Look for large price impacts followed by increased trading activity
        momentum_alerts = []
        
        # Find high-impact transactions
        high_impact_txs = impact_df[abs(impact_df['impact_pct']) > impact_threshold]
        
        for idx, high_impact_tx in high_impact_txs.iterrows():
            tx_time = high_impact_tx['timestamp']
            
            # Look for increased trading activity after the high-impact transaction
            follow_up_window = impact_df[
                (impact_df['timestamp'] > tx_time) & 
                (impact_df['timestamp'] <= tx_time + pd.Timedelta(minutes=time_window_minutes))
            ]
            
            # Compare activity to baseline (same time window before the transaction)
            baseline_window = impact_df[
                (impact_df['timestamp'] < tx_time) & 
                (impact_df['timestamp'] >= tx_time - pd.Timedelta(minutes=time_window_minutes))
            ]
            
            if len(follow_up_window) > len(baseline_window) * 1.5 and len(follow_up_window) >= 3:
                # Create chart
                fig = go.Figure()
                
                # Plot price timeline
                all_relevant_txs = pd.concat([
                    pd.DataFrame([high_impact_tx]), 
                    follow_up_window, 
                    baseline_window
                ]).sort_values(by='timestamp')
                
                # Create time series for price
                timestamps = all_relevant_txs['timestamp']
                prices = []
                for _, row in all_relevant_txs.iterrows():
                    prices.append(row['pre_price'])
                    prices.append(row['post_price'])
                    
                times_expanded = []
                for t in timestamps:
                    times_expanded.append(t - pd.Timedelta(seconds=30))
                    times_expanded.append(t + pd.Timedelta(seconds=30))
                
                # Plot price line
                fig.add_trace(go.Scatter(
                    x=times_expanded[:len(prices)],  # In case of any length mismatch
                    y=prices[:len(times_expanded)],
                    mode='lines',
                    name='Price'
                ))
                
                # Highlight the high-impact transaction
                fig.add_trace(go.Scatter(
                    x=[high_impact_tx['timestamp']],
                    y=[high_impact_tx['post_price']],
                    mode='markers',
                    marker=dict(
                        size=15,
                        color='red',
                        symbol='circle'
                    ),
                    name='Momentum Ignition'
                ))
                
                # Highlight the follow-up transactions
                if not follow_up_window.empty:
                    fig.add_trace(go.Scatter(
                        x=follow_up_window['timestamp'],
                        y=follow_up_window['post_price'],
                        mode='markers',
                        marker=dict(
                            size=10,
                            color='orange',
                            symbol='circle'
                        ),
                        name='Follow-up Activity'
                    ))
                
                fig.update_layout(
                    title='Potential Momentum Ignition Pattern',
                    xaxis_title='Time',
                    yaxis_title='Price',
                    hovermode='closest'
                )
                
                momentum_alerts.append({
                    "type": "Momentum Ignition",
                    "addresses": [high_impact_tx['from']],
                    "risk_level": "High" if abs(high_impact_tx['impact_pct']) > impact_threshold * 1.5 else "Medium",
                    "description": f"Large {high_impact_tx['impact_pct']:.2f}% price move followed by {len(follow_up_window)} transactions in {time_window_minutes} minutes (vs {len(baseline_window)} in baseline)",
                    "detection_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    "title": f"Momentum Ignition ({high_impact_tx['impact_pct']:.1f}% price move)",
                    "evidence": pd.concat([pd.DataFrame([high_impact_tx]), follow_up_window]),
                    "chart": fig
                })
        
        return momentum_alerts
    
    def run_all_detections(self, 
                         transactions_df: pd.DataFrame,
                         addresses: List[str],
                         price_data: Dict[str, Dict[str, Any]] = None,
                         order_book_data: Optional[pd.DataFrame] = None,
                         sensitivity: str = "Medium") -> List[Dict[str, Any]]:
        """
        Run all manipulation detection algorithms
        
        Args:
            transactions_df: DataFrame of transactions
            addresses: List of addresses to analyze
            price_data: Optional dictionary of price impact data for each transaction
            order_book_data: Optional DataFrame of order book data
            sensitivity: Detection sensitivity ("Low", "Medium", "High")
            
        Returns:
            List of potential manipulation alerts
        """
        if transactions_df.empty:
            return []
        
        all_alerts = []
        
        # Detect wash trading
        wash_trading_alerts = self.detect_wash_trading(
            transactions_df=transactions_df,
            addresses=addresses,
            sensitivity=sensitivity
        )
        all_alerts.extend(wash_trading_alerts)
        
        # Detect pump and dump (if price data available)
        if price_data:
            pump_and_dump_alerts = self.detect_pump_and_dump(
                transactions_df=transactions_df,
                price_data=price_data,
                sensitivity=sensitivity
            )
            all_alerts.extend(pump_and_dump_alerts)
            
            # Detect momentum ignition (if price data available)
            momentum_alerts = self.detect_momentum_ignition(
                transactions_df=transactions_df,
                price_data=price_data,
                sensitivity=sensitivity
            )
            all_alerts.extend(momentum_alerts)
        
        # Detect spoofing (if order book data available)
        if order_book_data is not None:
            spoofing_alerts = self.detect_spoofing(
                transactions_df=transactions_df,
                order_book_data=order_book_data,
                sensitivity=sensitivity
            )
            all_alerts.extend(spoofing_alerts)
            
            # Detect layering (if order book data available)
            layering_alerts = self.detect_layering(
                transactions_df=transactions_df,
                order_book_data=order_book_data,
                sensitivity=sensitivity
            )
            all_alerts.extend(layering_alerts)
        
        # Sort alerts by risk level
        risk_order = {"High": 0, "Medium": 1, "Low": 2}
        all_alerts.sort(key=lambda x: risk_order.get(x.get("risk_level", "Low"), 3))
        
        return all_alerts