Spaces:
Build error
Build error
File size: 34,148 Bytes
011960a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import os
import json
import logging
import time
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union, Any
from dotenv import load_dotenv
# Configure logging - Reduce verbosity and improve performance
logging.basicConfig(
level=logging.WARNING, # Only show warnings and errors by default
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
# Create a custom filter to suppress repetitive Gemini API errors
class SuppressRepetitiveErrors(logging.Filter):
def __init__(self):
super().__init__()
self.error_counts = {}
self.max_errors = 3 # Show at most 3 instances of each error
def filter(self, record):
if record.levelno < logging.WARNING:
return True
# If it's a Gemini API error for non-existent tokens, suppress it after a few occurrences
if 'Error fetching historical prices from Gemini API' in record.getMessage():
key = 'gemini_api_error'
self.error_counts[key] = self.error_counts.get(key, 0) + 1
# Only allow the first few errors through
return self.error_counts[key] <= self.max_errors
return True
# Apply the filter
logging.getLogger().addFilter(SuppressRepetitiveErrors())
from modules.api_client import ArbiscanClient, GeminiClient
from modules.data_processor import DataProcessor
from modules.visualizer import Visualizer
from modules.detection import ManipulationDetector
# Load environment variables
load_dotenv()
# Set page configuration
st.set_page_config(
page_title="Whale Wallet AI - Market Manipulation Detection",
page_icon="🐳",
layout="wide",
initial_sidebar_state="expanded"
)
# Add custom CSS
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #1E88E5;
text-align: center;
margin-bottom: 1rem;
}
.sub-header {
font-size: 1.5rem;
color: #424242;
margin-bottom: 1rem;
}
.info-text {
background-color: #E3F2FD;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Initialize Streamlit session state for persisting data between tab navigation
if 'transactions_data' not in st.session_state:
st.session_state.transactions_data = pd.DataFrame()
if 'patterns_data' not in st.session_state:
st.session_state.patterns_data = None
if 'price_impact_data' not in st.session_state:
st.session_state.price_impact_data = None
# Performance metrics tracking
if 'performance_metrics' not in st.session_state:
st.session_state.performance_metrics = {
'api_calls': 0,
'data_processing_time': 0,
'visualization_time': 0,
'last_refresh': None
}
# Function to track performance
def track_timing(category: str):
def timing_decorator(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - start_time
if category in st.session_state.performance_metrics:
st.session_state.performance_metrics[category] += elapsed
else:
st.session_state.performance_metrics[category] = elapsed
return result
return wrapper
return timing_decorator
if 'alerts_data' not in st.session_state:
st.session_state.alerts_data = None
# Initialize API clients
arbiscan_client = ArbiscanClient(os.getenv("ARBISCAN_API_KEY"))
# Set debug mode to False to reduce log output
arbiscan_client.verbose_debug = False
gemini_client = GeminiClient(os.getenv("GEMINI_API_KEY"))
# Initialize data processor and visualizer
data_processor = DataProcessor()
visualizer = Visualizer()
# Apply performance tracking to key instance methods after initialization
original_fetch_whale = arbiscan_client.fetch_whale_transactions
arbiscan_client.fetch_whale_transactions = track_timing('api_calls')(original_fetch_whale)
original_identify_patterns = data_processor.identify_patterns
data_processor.identify_patterns = track_timing('data_processing_time')(original_identify_patterns)
original_analyze_price_impact = data_processor.analyze_price_impact
data_processor.analyze_price_impact = track_timing('data_processing_time')(original_analyze_price_impact)
detection = ManipulationDetector()
# Initialize crew system (for AI-assisted analysis)
try:
from modules.crew_system import WhaleAnalysisCrewSystem
crew_system = WhaleAnalysisCrewSystem(arbiscan_client, gemini_client, data_processor)
CREW_ENABLED = True
logging.info("CrewAI system loaded successfully")
except Exception as e:
CREW_ENABLED = False
logging.error(f"Failed to load CrewAI system: {str(e)}")
st.sidebar.error("CrewAI features are disabled due to an error.")
# Sidebar for inputs
st.sidebar.header("Configuration")
# Wallet tracking section
st.sidebar.subheader("Track Wallets")
wallet_addresses = st.sidebar.text_area(
"Enter wallet addresses (one per line)",
placeholder="0x1234abcd...\n0xabcd1234..."
)
threshold_type = st.sidebar.radio(
"Threshold Type",
["Token Amount", "USD Value"]
)
if threshold_type == "Token Amount":
threshold_value = st.sidebar.number_input("Minimum Token Amount", min_value=0.0, value=1000.0)
token_symbol = st.sidebar.text_input("Token Symbol", placeholder="ETH")
else:
threshold_value = st.sidebar.number_input("Minimum USD Value", min_value=0.0, value=100000.0)
# Time period selection
st.sidebar.subheader("Time Period")
time_period = st.sidebar.selectbox(
"Select Time Period",
["Last 24 hours", "Last 7 days", "Last 30 days", "Custom"]
)
if time_period == "Custom":
start_date = st.sidebar.date_input("Start Date", datetime.now() - timedelta(days=7))
end_date = st.sidebar.date_input("End Date", datetime.now())
else:
# Calculate dates based on selection
end_date = datetime.now()
if time_period == "Last 24 hours":
start_date = end_date - timedelta(days=1)
elif time_period == "Last 7 days":
start_date = end_date - timedelta(days=7)
else: # Last 30 days
start_date = end_date - timedelta(days=30)
# Manipulation detection settings
st.sidebar.subheader("Manipulation Detection")
enable_manipulation_detection = st.sidebar.toggle("Enable Manipulation Detection", value=True)
if enable_manipulation_detection:
sensitivity = st.sidebar.select_slider(
"Detection Sensitivity",
options=["Low", "Medium", "High"],
value="Medium"
)
# Price impact analysis settings
st.sidebar.subheader("Price Impact Analysis")
enable_price_impact = st.sidebar.toggle("Enable Price Impact Analysis", value=True)
if enable_price_impact:
lookback_minutes = st.sidebar.slider("Lookback (minutes)", 1, 60, 5)
lookahead_minutes = st.sidebar.slider("Lookahead (minutes)", 1, 60, 5)
# Action buttons
track_button = st.sidebar.button("Track Transactions", type="primary")
pattern_button = st.sidebar.button("Analyze Patterns")
if enable_manipulation_detection:
detect_button = st.sidebar.button("Detect Manipulation")
# Main content area
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Transactions", "Patterns", "Price Impact", "Alerts", "Reports"
])
with tab1:
st.header("Whale Transactions")
if track_button and wallet_addresses:
with st.spinner("Fetching whale transactions..."):
# Function to track whale transactions
def track_whale_transactions(wallets, start_date, end_date, threshold_value, threshold_type, token_symbol=None):
# Direct API call since CrewAI is temporarily disabled
try:
min_token_amount = None
min_usd_value = None
if threshold_type == "Token Amount":
min_token_amount = threshold_value
else:
min_usd_value = threshold_value
# Add pagination control to prevent infinite API requests
max_pages = 5 # Limit the number of pages to prevent excessive API calls
transactions = arbiscan_client.fetch_whale_transactions(
addresses=wallets,
min_token_amount=min_token_amount,
max_pages=5,
min_usd_value=min_usd_value
)
if transactions.empty:
st.warning("No transactions found for the specified addresses")
return transactions
except Exception as e:
st.error(f"Error fetching transactions: {str(e)}")
return pd.DataFrame()
wallet_list = [addr.strip() for addr in wallet_addresses.split("\n") if addr.strip()]
# Use cached data or fetch new if not available
if st.session_state.transactions_data is None or track_button:
with st.spinner("Fetching transactions..."):
transactions = track_whale_transactions(
wallets=wallet_list,
start_date=start_date,
end_date=end_date,
threshold_value=threshold_value,
threshold_type=threshold_type,
token_symbol=token_symbol
)
# Store in session state
st.session_state.transactions_data = transactions
else:
transactions = st.session_state.transactions_data
if not transactions.empty:
st.success(f"Found {len(transactions)} transactions matching your criteria")
# Display transactions
if len(transactions) > 0:
st.dataframe(transactions, use_container_width=True)
# Add download button
csv = transactions.to_csv(index=False).encode('utf-8')
st.download_button(
"Download Transactions CSV",
csv,
"whale_transactions.csv",
"text/csv",
key='download-csv'
)
# Volume by day chart
st.subheader("Transaction Volume by Day")
try:
st.plotly_chart(visualizer.plot_volume_by_day(transactions), use_container_width=True)
except Exception as e:
st.error(f"Error generating volume chart: {str(e)}")
# Transaction flow visualization
st.subheader("Transaction Flow")
try:
flow_chart = visualizer.plot_transaction_flow(transactions)
st.plotly_chart(flow_chart, use_container_width=True)
except Exception as e:
st.error(f"Error generating flow chart: {str(e)}")
else:
st.warning("No transactions found matching your criteria. Try adjusting the parameters.")
else:
st.info("Enter wallet addresses and click 'Track Transactions' to view whale activity")
with tab2:
st.header("Trading Patterns")
if track_button and wallet_addresses:
with st.spinner("Analyzing trading patterns..."):
# Function to analyze trading patterns
def analyze_trading_patterns(wallets, start_date, end_date):
# Direct analysis
try:
transactions_df = arbiscan_client.fetch_whale_transactions(addresses=wallets, max_pages=5)
if transactions_df.empty:
st.warning("No transactions found for the specified addresses")
return []
return data_processor.identify_patterns(transactions_df)
except Exception as e:
st.error(f"Error analyzing trading patterns: {str(e)}")
return []
wallet_list = [addr.strip() for addr in wallet_addresses.split("\n") if addr.strip()]
# Use cached data or fetch new if not available
if st.session_state.patterns_data is None or track_button:
with st.spinner("Analyzing trading patterns..."):
patterns = analyze_trading_patterns(
wallets=wallet_list,
start_date=start_date,
end_date=end_date
)
# Store in session state
st.session_state.patterns_data = patterns
else:
patterns = st.session_state.patterns_data
if patterns:
for i, pattern in enumerate(patterns):
pattern_card = st.container()
with pattern_card:
# Pattern header with name and risk profile
header_cols = st.columns([3, 1])
with header_cols[0]:
st.subheader(f"Pattern {i+1}: {pattern['name']}")
with header_cols[1]:
risk_color = "green"
if pattern.get('risk_profile') == "Medium":
risk_color = "orange"
elif pattern.get('risk_profile') in ["High", "Very High"]:
risk_color = "red"
st.markdown(f"<h5 style='color:{risk_color};'>Risk: {pattern.get('risk_profile', 'Unknown')}</h5>", unsafe_allow_html=True)
# Pattern description and details
st.markdown(f"**Description:** {pattern['description']}")
# Additional strategy information
if 'strategy' in pattern:
st.markdown(f"**Strategy:** {pattern['strategy']}")
# Time insight
if 'time_insight' in pattern:
st.info(pattern['time_insight'])
# Metrics
metric_cols = st.columns(3)
with metric_cols[0]:
st.markdown(f"**Occurrences:** {pattern['occurrence_count']} instances")
with metric_cols[1]:
st.markdown(f"**Confidence:** {pattern.get('confidence', 0):.2f}")
with metric_cols[2]:
st.markdown(f"**Volume:** {pattern.get('volume_metric', 'N/A')}")
# Display main chart first
if 'charts' in pattern and 'main' in pattern['charts']:
st.plotly_chart(pattern['charts']['main'], use_container_width=True)
elif 'chart_data' in pattern and pattern['chart_data'] is not None: # Fallback for old format
st.plotly_chart(pattern['chart_data'], use_container_width=True)
# Create two columns for additional charts
if 'charts' in pattern and len(pattern['charts']) > 1:
charts_col1, charts_col2 = st.columns(2)
# Hourly distribution chart
if 'hourly_distribution' in pattern['charts']:
with charts_col1:
st.plotly_chart(pattern['charts']['hourly_distribution'], use_container_width=True)
# Value distribution chart
if 'value_distribution' in pattern['charts']:
with charts_col2:
st.plotly_chart(pattern['charts']['value_distribution'], use_container_width=True)
# Advanced metrics in expander
if 'metrics' in pattern and pattern['metrics']:
with st.expander("Detailed Metrics"):
metrics_table = []
for k, v in pattern['metrics'].items():
if v is not None:
if isinstance(v, float):
metrics_table.append([k.replace('_', ' ').title(), f"{v:.4f}"])
else:
metrics_table.append([k.replace('_', ' ').title(), v])
if metrics_table:
st.table(pd.DataFrame(metrics_table, columns=["Metric", "Value"]))
# Display example transactions
if 'examples' in pattern and not pattern['examples'].empty:
with st.expander("Example Transactions"):
# Format the dataframe for better display
display_df = pattern['examples'].copy()
# Convert timestamp to readable format if needed
if 'timeStamp' in display_df.columns and not pd.api.types.is_datetime64_any_dtype(display_df['timeStamp']):
display_df['timeStamp'] = pd.to_datetime(display_df['timeStamp'], unit='s')
st.dataframe(display_df, use_container_width=True)
st.markdown("---")
else:
st.info("No significant trading patterns detected. Try expanding the date range or adding more addresses.")
else:
st.info("Track transactions to analyze trading patterns")
with tab3:
st.header("Price Impact Analysis")
if enable_price_impact and track_button and wallet_addresses:
with st.spinner("Analyzing price impact..."):
# Function to analyze price impact
def analyze_price_impact(wallets, start_date, end_date, lookback_minutes, lookahead_minutes):
# Direct analysis
transactions_df = arbiscan_client.fetch_whale_transactions(addresses=wallets, max_pages=5)
# Get token from first transaction
if not transactions_df.empty:
token_symbol = transactions_df.iloc[0].get('tokenSymbol', 'ETH')
# For each transaction, get price impact
price_impacts = {}
progress_bar = st.progress(0)
for idx, row in transactions_df.iterrows():
progress = int((idx + 1) / len(transactions_df) * 100)
progress_bar.progress(progress, text=f"Analyzing transaction {idx+1} of {len(transactions_df)}")
if 'timeStamp' in row:
try:
tx_time = datetime.fromtimestamp(int(row['timeStamp']))
impact_data = gemini_client.get_price_impact(
symbol=f"{token_symbol}USD",
transaction_time=tx_time,
lookback_minutes=lookback_minutes,
lookahead_minutes=lookahead_minutes
)
price_impacts[row['hash']] = impact_data
except Exception as e:
st.warning(f"Could not get price data for transaction: {str(e)}")
progress_bar.empty()
if price_impacts:
return data_processor.analyze_price_impact(transactions_df, price_impacts)
# Create an empty chart for the default case
empty_fig = go.Figure()
empty_fig.update_layout(
title="No Price Impact Data Available",
xaxis_title="Time",
yaxis_title="Price Impact (%)",
height=400,
template="plotly_white"
)
empty_fig.add_annotation(
text="No transactions found with price impact data",
showarrow=False,
font=dict(size=14)
)
return {
"avg_impact_pct": 0,
"max_impact_pct": 0,
"min_impact_pct": 0,
"significant_moves_count": 0,
"total_transactions": 0,
"transactions_with_impact": pd.DataFrame(),
"charts": {
"main_chart": empty_fig,
"impact_distribution": empty_fig,
"cumulative_impact": empty_fig,
"hourly_impact": empty_fig
},
"insights": [],
"impact_summary": "No price impact data available"
}
wallet_list = [addr.strip() for addr in wallet_addresses.split("\n") if addr.strip()]
# Use cached data or fetch new if not available
if st.session_state.price_impact_data is None or track_button:
with st.spinner("Analyzing price impact..."):
impact_analysis = analyze_price_impact(
wallets=wallet_list,
start_date=start_date,
end_date=end_date,
lookback_minutes=lookback_minutes,
lookahead_minutes=lookahead_minutes
)
# Store in session state
st.session_state.price_impact_data = impact_analysis
else:
impact_analysis = st.session_state.price_impact_data
if impact_analysis:
# Display impact summary
if 'impact_summary' in impact_analysis:
st.info(impact_analysis['impact_summary'])
# Summary metrics in two rows
metrics_row1 = st.columns(4)
with metrics_row1[0]:
st.metric("Avg. Price Impact (%)", f"{impact_analysis.get('avg_impact_pct', 0):.2f}%")
with metrics_row1[1]:
st.metric("Max Impact (%)", f"{impact_analysis.get('max_impact_pct', 0):.2f}%")
with metrics_row1[2]:
st.metric("Min Impact (%)", f"{impact_analysis.get('min_impact_pct', 0):.2f}%")
with metrics_row1[3]:
st.metric("Std Dev (%)", f"{impact_analysis.get('std_impact_pct', 0):.2f}%")
metrics_row2 = st.columns(4)
with metrics_row2[0]:
st.metric("Significant Moves", impact_analysis.get('significant_moves_count', 0))
with metrics_row2[1]:
st.metric("High Impact Moves", impact_analysis.get('high_impact_moves_count', 0))
with metrics_row2[2]:
st.metric("Positive/Negative", f"{impact_analysis.get('positive_impacts_count', 0)}/{impact_analysis.get('negative_impacts_count', 0)}")
with metrics_row2[3]:
st.metric("Total Transactions", impact_analysis.get('total_transactions', 0))
# Display insights if available
if 'insights' in impact_analysis and impact_analysis['insights']:
st.subheader("Key Insights")
for insight in impact_analysis['insights']:
st.markdown(f"**{insight['title']}**: {insight['description']}")
# Display the main chart
if 'charts' in impact_analysis and 'main_chart' in impact_analysis['charts']:
st.subheader("Price Impact Over Time")
st.plotly_chart(impact_analysis['charts']['main_chart'], use_container_width=True)
# Create two columns for secondary charts
col1, col2 = st.columns(2)
# Distribution chart
if 'charts' in impact_analysis and 'impact_distribution' in impact_analysis['charts']:
with col1:
st.plotly_chart(impact_analysis['charts']['impact_distribution'], use_container_width=True)
# Cumulative impact chart
if 'charts' in impact_analysis and 'cumulative_impact' in impact_analysis['charts']:
with col2:
st.plotly_chart(impact_analysis['charts']['cumulative_impact'], use_container_width=True)
# Hourly impact chart
if 'charts' in impact_analysis and 'hourly_impact' in impact_analysis['charts']:
st.plotly_chart(impact_analysis['charts']['hourly_impact'], use_container_width=True)
# Detailed transactions with impact
if not impact_analysis['transactions_with_impact'].empty:
st.subheader("Transactions with Price Impact")
# Convert numeric columns to have 2 decimal places for better display
display_df = impact_analysis['transactions_with_impact'].copy()
for col in ['impact_pct', 'pre_price', 'post_price', 'cumulative_impact']:
if col in display_df.columns:
display_df[col] = display_df[col].apply(lambda x: f"{float(x):.2f}%" if pd.notnull(x) else "N/A")
st.dataframe(display_df, use_container_width=True)
else:
st.info("No transaction-specific price impact data available")
else:
st.info("No price impact data available for the given parameters")
else:
st.info("Enable Price Impact Analysis and track transactions to see price effects")
with tab4:
st.header("Manipulation Alerts")
if enable_manipulation_detection and detect_button and wallet_addresses:
with st.spinner("Detecting potential manipulation..."):
wallet_list = [addr.strip() for addr in wallet_addresses.split("\n") if addr.strip()]
# Function to detect manipulation
def detect_manipulation(wallets, start_date, end_date, sensitivity):
try:
transactions_df = arbiscan_client.fetch_whale_transactions(addresses=wallets, max_pages=5)
if transactions_df.empty:
st.warning("No transactions found for the specified addresses")
return []
pump_dump = detection.detect_pump_and_dump(transactions_df, sensitivity)
wash_trades = detection.detect_wash_trading(transactions_df, wallets, sensitivity)
return pump_dump + wash_trades
except Exception as e:
st.error(f"Error detecting manipulation: {str(e)}")
return []
alerts = detect_manipulation(
wallets=wallet_list,
start_date=start_date,
end_date=end_date,
sensitivity=sensitivity
)
if alerts:
for i, alert in enumerate(alerts):
alert_color = "red" if alert['risk_level'] == "High" else "orange" if alert['risk_level'] == "Medium" else "blue"
with st.expander(f" {alert['type']} - Risk: {alert['risk_level']}", expanded=i==0):
st.markdown(f"<h4 style='color:{alert_color}'>{alert['title']}</h4>", unsafe_allow_html=True)
st.write(f"**Description:** {alert['description']}")
st.write(f"**Detection Time:** {alert['detection_time']}")
st.write(f"**Involved Addresses:** {', '.join(alert['addresses'])}")
# Display evidence
if 'evidence' in alert and alert['evidence'] is not None and not (isinstance(alert['evidence'], pd.DataFrame) and alert['evidence'].empty):
st.subheader("Evidence")
try:
evidence_df = alert['evidence']
if isinstance(evidence_df, str):
# Try to convert from JSON string if needed
evidence_df = pd.read_json(evidence_df)
st.dataframe(evidence_df, use_container_width=True)
except Exception as e:
st.error(f"Error displaying evidence: {str(e)}")
# Display chart if available
if 'chart' in alert and alert['chart'] is not None:
try:
st.plotly_chart(alert['chart'], use_container_width=True)
except Exception as e:
st.error(f"Error displaying chart: {str(e)}")
else:
st.success("No manipulation tactics detected for the given parameters")
else:
st.info("Enable Manipulation Detection and click 'Detect Manipulation' to scan for suspicious activity")
with tab5:
st.header("Reports & Visualizations")
# Report type selection
report_type = st.selectbox(
"Select Report Type",
["Transaction Summary", "Pattern Analysis", "Price Impact", "Manipulation Detection", "Complete Analysis"]
)
# Export format
export_format = st.radio(
"Export Format",
["CSV", "PDF", "PNG"],
horizontal=True
)
# Generate report button
if st.button("Generate Report"):
if wallet_addresses:
with st.spinner("Generating report..."):
wallet_list = [addr.strip() for addr in wallet_addresses.split("\n") if addr.strip()]
if CREW_ENABLED and crew_system is not None:
try:
with st.spinner("Generating AI analysis report..."):
# Check if crew_system has llm attribute defined
if not hasattr(crew_system, 'llm') or crew_system.llm is None:
raise ValueError("LLM not initialized in crew system")
report = crew_system.generate_market_manipulation_report(wallet_addresses=wallet_list)
st.markdown(f"## AI Analysis Report")
st.markdown(report['content'])
if 'charts' in report and report['charts']:
for i, chart in enumerate(report['charts']):
st.plotly_chart(chart, use_container_width=True)
except Exception as e:
st.error(f"CrewAI report generation failed: {str(e)}")
st.warning("Using direct analysis instead")
# Fallback to direct analysis
with st.spinner("Generating basic analysis..."):
insights = detection.generate_manipulation_insights(transactions=st.session_state.transactions_data)
st.markdown(f"## Potential Manipulation Insights")
for insight in insights:
st.markdown(f"**{insight['title']}**\n{insight['description']}")
else:
st.error("Failed to generate report: CrewAI is not enabled")
else:
st.error("Please enter wallet addresses to generate a report")
# Footer with instructions
st.markdown("---")
with st.expander("How to Use"):
st.markdown("""
### Typical Workflow
1. **Input wallet addresses** in the sidebar - these are the whale wallets you want to track
2. **Set the minimum threshold** for transaction size (token amount or USD value)
3. **Select time period** for analysis
4. **Click 'Track Transactions'** to see large transfers for these wallets
5. **Enable additional analysis** like pattern recognition or manipulation detection
6. **Export reports** for further analysis or record-keeping
### API Keys
This app requires two API keys to function properly:
- **ARBISCAN_API_KEY** - For accessing Arbitrum blockchain data
- **GEMINI_API_KEY** - For real-time token price data
These should be stored in a `.env` file in the project root.
""")
|