arjunascagnetto commited on
Commit
591425a
·
1 Parent(s): 526d2c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -8,11 +8,21 @@ import gradio as gr
8
  #tokenizer = BertTokenizer.from_pretrained('clinicalBERT')
9
  #model = BertLMHeadModel.from_pretrained('clinicalBERT')
10
 
11
- from transformers import AutoTokenizer, AutoModel
12
- tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT")
13
- model = AutoModel.from_pretrained("medicalai/ClinicalBERT")
14
 
15
 
 
 
 
 
 
 
 
 
 
 
16
  # Define a function to generate text using the model
17
  def generate_text(input_text):
18
  input_ids = tokenizer.encode(input_text, return_tensors='pt')
 
8
  #tokenizer = BertTokenizer.from_pretrained('clinicalBERT')
9
  #model = BertLMHeadModel.from_pretrained('clinicalBERT')
10
 
11
+ #from transformers import AutoTokenizer, AutoModel
12
+ #tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT")
13
+ #model = AutoModel.from_pretrained("medicalai/ClinicalBERT")
14
 
15
 
16
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
17
+
18
+ # Carica il modello e il tokenizzatore
19
+ tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
20
+ model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=2)
21
+
22
+ # Esempio di utilizzo del modello
23
+ inputs = tokenizer("Esempio di testo da classificare", return_tensors="pt")
24
+ outputs = model(**inputs)
25
+
26
  # Define a function to generate text using the model
27
  def generate_text(input_text):
28
  input_ids = tokenizer.encode(input_text, return_tensors='pt')