File size: 9,672 Bytes
9c00ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import gradio as gr
import pandas as pd
import openai
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")

# Simple database using pandas DataFrames
class SimpleDatabase:
    def __init__(self):
        # Sample product data
        self.products = pd.DataFrame({
            'product_id': [1, 2, 3, 4, 5],
            'name': ['Laptop', 'Smartphone', 'Headphones', 'Monitor', 'Keyboard'],
            'category': ['Electronics', 'Electronics', 'Audio', 'Electronics', 'Accessories'],
            'price': [1200, 800, 150, 300, 80],
            'stock': [10, 25, 50, 15, 30]
        })
        
        # Sample transactions data
        self.transactions = pd.DataFrame({
            'transaction_id': [101, 102, 103, 104, 105, 106, 107],
            'product_id': [1, 2, 3, 1, 5, 2, 4],
            'quantity': [1, 2, 3, 1, 2, 1, 2],
            'date': ['2025-04-29', '2025-04-29', '2025-04-28', '2025-04-28', '2025-04-27', '2025-04-29', '2025-04-29'],
            'revenue': [1200, 1600, 450, 1200, 160, 800, 600]
        })
    
    def query_database(self, query_type, **kwargs):
        """Execute queries on the database based on query type"""
        if query_type == "product_info":
            if 'product_name' in kwargs:
                return self.products[self.products['name'].str.lower() == kwargs['product_name'].lower()]
            elif 'product_id' in kwargs:
                return self.products[self.products['product_id'] == kwargs['product_id']]
            else:
                return self.products
                
        elif query_type == "max_revenue_product":
            date_filter = kwargs.get('date', '2025-04-29')  # Default to today
            
            # Group by product_id and calculate total revenue for the specified date
            daily_revenue = self.transactions[self.transactions['date'] == date_filter].groupby(
                'product_id')['revenue'].sum().reset_index()
            
            if daily_revenue.empty:
                return "No sales data found for that date."
                
            # Find the product with max revenue
            max_revenue_product_id = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['product_id']
            max_revenue = daily_revenue.loc[daily_revenue['revenue'].idxmax()]['revenue']
            
            # Get product details
            product_details = self.products[self.products['product_id'] == max_revenue_product_id].iloc[0]
            
            return {
                'product_name': product_details['name'],
                'revenue': max_revenue,
                'date': date_filter
            }
            
        elif query_type == "inventory_check":
            product_name = kwargs.get('product_name')
            if product_name:
                product = self.products[self.products['name'].str.lower() == product_name.lower()]
                if not product.empty:
                    return {'product': product_name, 'stock': product.iloc[0]['stock']}
                return f"Product '{product_name}' not found."
            return self.products[['name', 'stock']]
            
        return "Query type not supported"

class QueryRouter:
    def __init__(self):
        """Initialize the query router"""
        pass
        
    def _classify_query(self, query):
        """Classify the query to determine which agent should handle it"""
        # Use OpenAI to classify the query
        response = openai.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": """
                You are a query classifier for a shop assistant system. 
                Classify customer queries into one of these categories:
                - max_revenue_product: Questions about which product generated the most revenue (today or on a specific date)
                - inventory_check: Questions about product availability or stock levels
                - product_info: Questions about product details, pricing, etc.
                - general_knowledge: Questions that require general knowledge not related to specific shop data
                
                Return ONLY the category as a single word without any explanation.
                """},
                {"role": "user", "content": query}
            ],
            temperature=0
        )
        
        # Extract the query type from the response
        query_type = response.choices[0].message.content.strip().lower()
        return query_type
        
    def _extract_parameters(self, query, query_type):
        """Extract relevant parameters from the query based on query type"""
        # Use OpenAI to extract parameters
        prompt_content = f"""
        Extract parameters from this customer query: "{query}"
        Query type: {query_type}
        
        For max_revenue_product:
        - date (in YYYY-MM-DD format, extract "today" as today's date which is 2025-04-29)
        
        For inventory_check or product_info:
        - product_name (the name of the product being asked about)
        
        Return ONLY a valid JSON object with the extracted parameters, nothing else.
        Example: {{"product_name": "laptop"}} or {{"date": "2025-04-29"}}
        """
        
        response = openai.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You extract parameters from customer queries for a shop assistant."},
                {"role": "user", "content": prompt_content}
            ],
            temperature=0,
            response_format={"type": "json_object"}
        )
        
        # Parse the JSON response
        import json
        try:
            parameters = json.loads(response.choices[0].message.content)
            return parameters
        except json.JSONDecodeError:
            return {}
            
    def _handle_general_knowledge(self, query):
        """Handle general knowledge queries using OpenAI"""
        response = openai.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": """
                You are a helpful assistant for a shop. Answer the customer's question 
                using your general knowledge. Keep answers brief and focused.
                """},
                {"role": "user", "content": query}
            ],
            temperature=0.7,
            max_tokens=150
        )
        
        return response.choices[0].message.content
        
    def _format_response(self, query_type, data):
        """Format the response based on query type and data"""
        if query_type == "max_revenue_product":
            if isinstance(data, str):
                return data
            return f"The product with the highest revenue on {data['date']} is {data['product_name']} with ${data['revenue']} in sales."
            
        elif query_type == "inventory_check":
            if isinstance(data, str):
                return data
            if isinstance(data, dict) and 'product' in data:
                return f"We currently have {data['stock']} units of {data['product']} in stock."
            return "Here's our current inventory: " + ", ".join([f"{row['name']}: {row['stock']} units" for _, row in data.iterrows()])
            
        elif query_type == "product_info":
            if data.empty:
                return "Product not found."
            if len(data) == 1:
                product = data.iloc[0]
                return f"{product['name']} ({product['category']}): ${product['price']}. We have {product['stock']} units in stock."
            return "Here are our products: " + ", ".join([f"{row['name']}: ${row['price']}" for _, row in data.iterrows()])
            
        return str(data)
        
    def process(self, query, db):
        """Process the query and return a response"""
        # Classify the query
        query_type = self._classify_query(query)
        
        # If it's a general knowledge query, handle it differently
        if query_type == "general_knowledge":
            return self._handle_general_knowledge(query)
            
        # Extract parameters from the query
        parameters = self._extract_parameters(query, query_type)
        
        # Query the database
        result = db.query_database(query_type, **parameters)
        
        # Format the response
        response = self._format_response(query_type, result)
        
        return response

# Initialize database and router
db = SimpleDatabase()
router = QueryRouter()

def process_query(query):
    """Process the user query and return a response"""
    if not query.strip():
        return "Please ask a question about our shop products or services."
    
    response = router.process(query, db)
    return response

# Create Gradio interface
demo = gr.Interface(
    fn=process_query,
    inputs=gr.Textbox(
        placeholder="Ask about product pricing, inventory, sales, or any other question...",
        label="Customer Query"
    ),
    outputs=gr.Textbox(label="Shop Assistant Response"),
    title="Shop Voice Box Assistant",
    description="Ask questions about products, inventory, sales, or general questions.",
    examples=[
        ["What's the maximum revenue product today?"],
        ["How many laptops do we have in stock?"],
        ["Tell me about the smartphone."],
        ["What's the weather like today?"]
    ]
)

# Launch the app
if __name__ == "__main__":
    demo.launch()