# ============================================================================= # REQUIRED CONFIGURATION # ============================================================================= # Hugging Face token with read/write permissions for repositories and inference API # Get it from: https://huggingface.co/settings/tokens HF_TOKEN=hg_... # ----------------------------------------------------------------------------- # GENERATION SETTINGS # ----------------------------------------------------------------------------- MAX_NUM_TOKENS=2048 MAX_NUM_ROWS=1000 DEFAULT_BATCH_SIZE=5 # Required for chat data generation with Llama or Qwen models # Options: "llama3", "qwen2", or custom template string #MAGPIE_PRE_QUERY_TEMPLATE=qwen2 # ============================================================================= # MODEL & SERVICES CONFIGURATION # ============================================================================= # ----------------------------------------------------------------------------- # A. STANDALONE SETUP (No additional installation required) # ----------------------------------------------------------------------------- # 1. HUGGING FACE SERVERLESS (Recommended default) # Just requires HF_TOKEN # MODEL=meta-llama/Llama-3.1-8B-Instruct # MODEL=Qwen/Qwen2.5-1.5B-Instruct # 2. ARGILLA ON HUGGING FACE SPACES (Recommended for data annotation) # ARGILLA_API_URL=https://daqc-my-argilla.hf.space/ #ARGILLA_API_KEY= # 3. OPENAI API # Requires OpenAI API key # OPENAI_BASE_URL=https://api.openai.com/v1/ # MODEL=gpt-4 # API_KEY= # ----------------------------------------------------------------------------- # B. LOCAL SETUP (Requires local installation) # ----------------------------------------------------------------------------- # 1. LOCAL OLLAMA # Requires: Ollama installed (https://ollama.ai) #OLLAMA_BASE_URL=http://127.0.0.1:11434/ #MODEL=qwen2.5:32b-instruct-q5_K_S #TOKENIZER_ID=Qwen/Qwen2.5-32B-Instruct # MODEL=deepseek-r1:1.5b # TOKENIZER_ID=deepseek-r1:1.5b # 2. LOCAL VLLM # Requires: VLLM installed # VLLM_BASE_URL=http://127.0.0.1:8000/ # MODEL=Qwen/Qwen2.5-1.5B-Instruct # TOKENIZER_ID=Qwen/Qwen2.5-1.5B-Instruct # 3. LOCAL TGI/ENDPOINTS # Requires: Text Generation Inference installed # HUGGINGFACE_BASE_URL=http://127.0.0.1:3000/ # TOKENIZER_ID=meta-llama/Llama-3.1-8B-Instruct # ----------------------------------------------------------------------------- # C. DOCKER SETUP (Ready to use with docker-compose, recommended for full setup) # ----------------------------------------------------------------------------- # 1. DOCKER OLLAMA OLLAMA_BASE_URL=http://ollama:11434 # Options for OLLAMA_HARDWARE: latest (for CPU/NVIDIA), rocm (for AMD) OLLAMA_HARDWARE=latest # DEEPSEEK R1 #MODEL=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B #TOKENIZER_ID=deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B #MAGPIE_PRE_QUERY_TEMPLATE= "<|begin▁of▁sentence|>User: " # use the custom template for the model #LLAMA3.2 MODEL=llama3.2:1b # model for instruction generation TOKENIZER_ID=meta-llama/Llama-3.2-1B-Instruct # tokenizer for instruction generation MAGPIE_PRE_QUERY_TEMPLATE=llama3 # magpie template required for instruction generation # 2. DOCKER ARGILLA (persistent data) ARGILLA_API_URL=http://argilla:6900 ARGILLA_USERNAME=admin ARGILLA_PASSWORD=admin1234 ARGILLA_API_KEY=admin.1234 ARGILLA_REINDEX_DATASET=1 # Usage: #docker-compose --profile with-ollama --profile with-argilla build #(open new terminal) docker-compose --profile with-ollama up -d # docker-compose exec ollama ollama run llama3.2:1b #docker-compose --profile with-ollama --profile with-argilla up -d